Maximum Satisfiability: Anatomy of the Fitness Landscape for a Hard Combinatorial Optimization Problem
暂无分享,去创建一个
Adam Prügel-Bennett | Mohammad-Hassan Tayarani-Najaran | A. Prügel-Bennett | Mohammad-Hassan Tayarani-Najaran
[1] Florent Krzakala,et al. A Landscape Analysis of Constraint Satisfaction Problems , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] Peter F. Stadler,et al. Towards a theory of landscapes , 1995 .
[3] Hector J. Levesque,et al. A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.
[4] Anton V. Eremeev,et al. Statistical analysis of local search landscapes , 2004, J. Oper. Res. Soc..
[5] Lee Altenberg,et al. Fitness Distance Correlation Analysis: An Instructive Counterexample , 1997, ICGA.
[6] Josselin Garnier,et al. Efficiency of Local Search with Multiple Local Optima , 2001, SIAM J. Discret. Math..
[7] Thierry Mora,et al. Clustering of solutions in the random satisfiability problem , 2005, Physical review letters.
[8] Hector J. Levesque,et al. Hard and Easy Distributions of SAT Problems , 1992, AAAI.
[9] Andrew B. Kahng,et al. A new adaptive multi-start technique for combinatorial global optimizations , 1994, Oper. Res. Lett..
[10] Adam Prügel-Bennett,et al. Symmetry breaking in population-based optimization , 2004, IEEE Transactions on Evolutionary Computation.
[11] Colin R. Reeves,et al. Estimating the Number of Solutions for SAT Problems , 2004, PPSN.
[12] Andrea Montanari,et al. Instability of one-step replica-symmetry-broken phase in satisfiability problems , 2003, ArXiv.
[13] Assaf Naor,et al. Rigorous location of phase transitions in hard optimization problems , 2005, Nature.
[14] Bart Selman,et al. Noise Strategies for Improving Local Search , 1994, AAAI.
[15] David E. Goldberg,et al. Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.
[16] Rémi Monasson,et al. Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.
[17] L. Darrell Whitley,et al. Polynomial Time Summary Statistics for a Generalization of MAXSAT , 1999, GECCO.
[18] M. Mézard,et al. Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] Stephen A. Cook,et al. Characterizations of Pushdown Machines in Terms of Time-Bounded Computers , 1971, J. ACM.
[20] Tim Jones. Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .
[21] Thomas Stützle,et al. Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.
[22] James M. Crawford,et al. Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..
[23] Lov K. Grover. Local search and the local structure of NP-complete problems , 1992, Oper. Res. Lett..
[24] Rémi Monasson,et al. Statistical mechanics methods and phase transitions in optimization problems , 2001, Theor. Comput. Sci..
[25] Benjamín Barán,et al. Ant Colony Optimization with Adaptive Fitness Function for Satisfiability Testing , 2007, WoLLIC.
[26] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[27] E. Weinberger,et al. Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.
[28] Andrew M. Sutton,et al. A Theoretical Analysis of the k-Satisfiability Search Space , 2009, SLS.
[29] P. Stadler. Landscapes and their correlation functions , 1996 .
[30] Kathleen Steinhöfel,et al. Analysis of Local Search Landscapes for k-SAT Instances , 2010, Math. Comput. Sci..
[31] Adam Prügel-Bennett,et al. Learning the Large-Scale Structure of the MAX-SAT Landscape Using Populations , 2010, IEEE Transactions on Evolutionary Computation.
[32] Ashraf M. Abdelbar,et al. Swarm optimization with instinct-driven particles , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[33] L. Darrell Whitley,et al. Genetic Algorithm Behavior in the MAXSAT Domain , 1998, PPSN.
[34] Bernd Freisleben,et al. Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..