Membrane- and plate-type acoustic metamaterials.

Over the past decade there has been a great amount of research effort devoted to the topic of acoustic metamaterials (AMMs). The recent development of AMMs has enlightened the way of manipulating sound waves. Several potential applications such as low-frequency noise reduction, cloaking, angular filtering, subwavelength imaging, and energy tunneling have been proposed and implemented by the so-called membrane- or plate-type AMMs. This paper aims to offer a thorough overview on the recent development of membrane- or plate-type AMMs. The underlying mechanism of these types of AMMs for tuning the effective density will be examined first. Four different groups of membrane- or plate-type AMMs (membranes with masses attached, plates with masses attached, membranes or plates without masses attached, and active AMMs) will be reviewed. The opportunities, limitations, and challenges of membrane- or plate-type AMMs will be also discussed.

[1]  A. Baz,et al.  Multi-cell Active Acoustic Metamaterial with Programmable Bulk Modulus , 2010 .

[2]  Hui Zhang,et al.  An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation , 2015 .

[3]  Novel negative mass density resonant metamaterial unit cell , 2015 .

[4]  Sam-Hyeon Lee,et al.  Acoustic metamaterial with negative modulus , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Amr M. Baz,et al.  Analysis and experimental demonstration of an active acoustic metamaterial cell , 2012 .

[6]  Xiang Zhang,et al.  Surface resonant states and superlensing in acoustic metamaterials , 2007 .

[7]  P. Sheng,et al.  Active control of membrane-type acoustic metamaterial by electric field , 2015 .

[8]  P. Sheng,et al.  Dark acoustic metamaterials as super absorbers for low-frequency sound , 2012, Nature Communications.

[9]  W. Akl,et al.  Stability analysis of active acoustic metamaterial with programmable bulk modulus , 2011 .

[10]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[11]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[12]  P. Sheng,et al.  Acoustic metasurface with hybrid resonances. , 2014, Nature materials.

[13]  A. Baz,et al.  Acoustic metamaterials with circular sector cavities and programmable densities. , 2012, The Journal of the Acoustical Society of America.

[14]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[15]  Gengkai Hu,et al.  Negative effective mass below a cut-off frequency , 2010, 1001.0839.

[16]  S. Yao,et al.  Sound reduction by metamaterial-based acoustic enclosure , 2014 .

[17]  Jiuhui Wu,et al.  A purely flexible lightweight membrane-type acoustic metamaterial , 2015 .

[18]  O. von Estorff,et al.  Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses , 2015 .

[19]  Gengkai Hu,et al.  Experimental study on negative effective mass in a 1D mass–spring system , 2008 .

[20]  Gengkai Hu,et al.  Effective medium theory of thin-plate acoustic metamaterials. , 2014, The Journal of the Acoustical Society of America.

[21]  Chul Koo Kim,et al.  Amplification of acoustic evanescent waves using metamaterial slabs. , 2011, Physical review letters.

[22]  Chul Koo Kim,et al.  Reversed Doppler effect in double negative metamaterials , 2010 .

[23]  S. Cummer,et al.  Broadband Acoustic Hyperbolic Metamaterial. , 2015, Physical review letters.

[24]  S. Cummer,et al.  Three-dimensional broadband omnidirectional acoustic ground cloak. , 2014, Nature materials.

[25]  G. Hu,et al.  Acoustic cloak constructed with thin-plate metamaterials , 2015 .

[26]  Jihong Wen,et al.  Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators , 2012 .

[27]  N. Fang,et al.  Focusing ultrasound with an acoustic metamaterial network. , 2009, Physical review letters.

[28]  P. Sheng,et al.  Coupled membranes with doubly negative mass density and bulk modulus. , 2013, Physical review letters.

[29]  G. Lerosey,et al.  Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials , 2015, Nature.

[30]  V. Gusev,et al.  Double-negative flexural acoustic metamaterial , 2014 .

[31]  G. Hu,et al.  Experimental study on acoustic subwavelength imaging based on zero-mass metamaterials , 2015 .

[32]  S. Cummer,et al.  Experimental acoustic ground cloak in air. , 2011, Physical review letters.

[33]  P. Sheng,et al.  Membrane-type acoustic metamaterial with negative dynamic mass. , 2008, Physical review letters.

[34]  Steven A Cummer,et al.  Non-reciprocal and highly nonlinear active acoustic metamaterials , 2014, Nature Communications.

[35]  Steven A. Cummer,et al.  Active acoustic metamaterials reconfigurable in real-time , 2015, 1505.00453.

[36]  S. Cummer,et al.  Measurement of a broadband negative index with space-coiling acoustic metamaterials. , 2012, Physical review letters.

[37]  Christina J. Naify,et al.  Membrane-type metamaterials: Transmission loss of multi-celled arrays , 2011 .

[38]  M. Badreddine Assouar,et al.  General analytical approach for sound transmission loss analysis through a thick metamaterial plate , 2014 .

[39]  Guoliang Huang,et al.  Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model. , 2013, The Journal of the Acoustical Society of America.

[40]  Massimo Ruzzene,et al.  Broadband plate-type acoustic metamaterial for low-frequency sound attenuation , 2012 .

[41]  Gengkai Hu,et al.  Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass , 2011, 1105.0001.

[42]  Gang Wang,et al.  Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches , 2015 .

[43]  Chen Shen,et al.  Side branch-based acoustic metamaterials with a broad-band negative bulk modulus , 2014 .

[44]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[45]  Bin Liang,et al.  Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. , 2009, Physical review letters.

[46]  Hui Zhang,et al.  Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory , 2011 .

[47]  Yong Li,et al.  Acoustic focusing by coiling up space , 2012 .

[48]  Gengkai Hu,et al.  Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials. , 2012, The Journal of the Acoustical Society of America.

[49]  Hervé Lissek,et al.  Acoustic transmission line metamaterial with negative/zero/positive refractive index , 2010 .

[50]  Fuh-Gwo Yuan,et al.  Microstructural designs of plate-type elastic metamaterial and their potential applications: a review , 2015 .

[51]  Steven A. Cummer,et al.  Tunable active acoustic metamaterials , 2013 .

[52]  Jong Jin Park,et al.  Acoustic superlens using membrane-based metamaterials , 2015 .

[53]  Nicholas X. Fang,et al.  Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers , 2014 .

[54]  Yan Pennec,et al.  Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars , 2014 .

[55]  Jihong Wen,et al.  Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials , 2012 .

[56]  Research on pass band with negative phase velocity in tubular acoustic metamaterial , 2012 .

[57]  Huanyang Chen,et al.  Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface , 2014, Nature Communications.

[58]  A. Baz,et al.  Multicell Active Acoustic Metamaterial With Programmable Effective Densities , 2012 .

[59]  Jihong Wen,et al.  Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells , 2013 .

[60]  Ying Wu,et al.  Elastic metamaterials with simultaneously negative effective shear modulus and mass density. , 2011, Physical review letters.

[61]  Amr M. Baz,et al.  The structure of an active acoustic metamaterial with tunable effective density , 2009 .

[62]  Sam-Hyeon Lee,et al.  Composite acoustic medium with simultaneously negative density and modulus. , 2010, Physical review letters.

[63]  C. Chan,et al.  Space-coiling metamaterials with double negativity and conical dispersion , 2012, Scientific Reports.

[64]  Christina J. Naify,et al.  Scaling of membrane-type locally resonant acoustic metamaterial arrays. , 2012, The Journal of the Acoustical Society of America.

[65]  Ping Sheng,et al.  Sound absorption by subwavelength membrane structures: A geometric perspective , 2015, 1502.06358.

[66]  Sam-Hyeon Lee,et al.  Acoustic metamaterial with negative density , 2009 .

[67]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[68]  Gengkai Hu,et al.  Investigation of the negative-mass behaviors occurring below a cut-off frequency , 2010 .

[69]  Ping Sheng,et al.  Low-frequency narrow-band acoustic filter with large orifice , 2013 .

[70]  Yanhui Xi,et al.  Enlargement of locally resonant sonic band gap by using composite plate-type acoustic metamaterial , 2015 .

[71]  Guoliang Huang,et al.  Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model. , 2013, The Journal of the Acoustical Society of America.

[72]  C. Sun,et al.  Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial , 2014, Nature Communications.

[73]  Tianning Chen,et al.  Band gap and defect state engineering in a multi-stub phononic crystal plate , 2015 .

[74]  F. Yuan,et al.  A lightweight yet sound-proof honeycomb acoustic metamaterial , 2015 .

[75]  N. Fang,et al.  Numerical study of a near-zero-index acoustic metamaterial , 2012 .

[76]  Raymond J. Cipra,et al.  The Low Frequency Performance of Metamaterial Barriers Based on Cellular Structures , 2013 .

[77]  Hui Zhang,et al.  Nonlinear effects in a metamaterial with double negativity , 2014 .

[78]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[79]  Bin Liang,et al.  Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces , 2013, Scientific Reports.

[80]  Design and analysis of an acoustic demultiplexer exploiting negative density, negative bulk modulus and extra-ordinary transmission of membrane-based acoustic metamaterial , 2014 .

[81]  Christina J. Naify,et al.  Experimental realization of a variable index transmission line metamaterial as an acoustic leaky-wave antenna , 2013 .

[82]  Xiao-jun Liu,et al.  Controlling sound transmission with density-near-zero acoustic membrane network , 2015 .

[83]  M. Badreddine Assouar,et al.  Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates , 2012 .

[84]  Andrea Alù,et al.  Extraordinary sound transmission through density-near-zero ultranarrow channels. , 2012, Physical review letters.

[85]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[86]  Youhe Zhou,et al.  Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial , 2014 .

[87]  A. Baz,et al.  Experimental characterization of active acoustic metamaterial cell with controllable dynamic density , 2012 .

[88]  Steven Nutt,et al.  Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials , 2010 .

[89]  Christina J. Naify,et al.  Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses , 2011 .

[90]  Jensen Li,et al.  Extreme acoustic metamaterial by coiling up space. , 2012, Physical review letters.

[91]  J. J. Park,et al.  Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials. , 2013, Physical review letters.

[92]  Shigang Ai,et al.  Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields , 2014 .

[93]  Andrea Alù,et al.  An invisible acoustic sensor based on parity-time symmetry , 2015, Nature Communications.

[94]  A. Baz,et al.  Active Acoustic Metamaterial With Simultaneously Programmable Density and Bulk Modulus , 2013 .

[95]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[96]  Ping Sheng,et al.  Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime , 2010 .

[97]  Amr M. Baz,et al.  An Active Acoustic Metamaterial With Tunable Effective Density , 2010 .

[98]  An acoustic dual filter in the audio frequencies with two local resonant systems , 2014 .

[99]  Ping Sheng,et al.  Subwavelength total acoustic absorption with degenerate resonators , 2015, 1509.03711.

[100]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.