A Pilot Study on Remote Sensing and Citizen Science for Archaeological Prospection

[1]  William E. Carter,et al.  Ancient Maya Regional Settlement and Inter-Site Analysis: The 2013 West-Central Belize LiDAR Survey , 2014, Remote. Sens..

[2]  Clement Atzberger,et al.  New ways to extract archaeological information from hyperspectral pixels , 2014 .

[3]  S. Crutchley,et al.  New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site , 2005, Antiquity.

[4]  Wojtek Kowalczyk,et al.  Combining Deep Learning and Location-Based Ranking for Large-Scale Archaeological Prospection of LiDAR Data from The Netherlands , 2020, ISPRS Int. J. Geo Inf..

[5]  Diofantos G. Hadjimitsis,et al.  Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks , 2014, Int. J. Digit. Earth.

[6]  Diofantos G. Hadjimitsis,et al.  Study of the Variations of Archaeological Marks at Neolithic Site of Lucera, Italy Using High-Resolution Multispectral Datasets , 2016, Remote. Sens..

[7]  E. B. Knipling Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation , 1970 .

[8]  David Kennedy,et al.  Google earth and the archaeology of Saudi Arabia. A case study from the Jeddah area , 2011 .

[9]  Diofantos G. Hadjimitsis,et al.  Orthogonal Equations of Multi-Spectral Satellite Imagery for the Identification of Un-Excavated Archaeological Sites , 2013, Remote. Sens..

[10]  Gil Denis,et al.  Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts ☆ , 2017 .

[11]  Le Yu,et al.  Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives , 2012 .

[12]  Li Li,et al.  Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review , 2018, Remote. Sens..

[13]  Arlen F. Chase,et al.  Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize , 2011 .

[14]  Diofantos G. Hadjimitsis,et al.  Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks , 2012, Remote. Sens..

[15]  R. Frondoni,et al.  A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001 , 2011 .

[16]  Clodoveu A. Davis,et al.  ThemeRise: a theme-oriented framework for volunteered geographic information applications , 2018, Open Geospatial Data, Software and Standards.

[17]  R. Hesse,et al.  LiDAR‐derived Local Relief Models – a new tool for archaeological prospection , 2010 .

[18]  WangLizhe,et al.  Remote sensing big data computing , 2015 .

[19]  Gert R. G. Lanckriet,et al.  Crowdsourcing the Unknown: The Satellite Search for Genghis Khan , 2014, PloS one.

[20]  Albert Y. Zomaya,et al.  Remote sensing big data computing: Challenges and opportunities , 2015, Future Gener. Comput. Syst..

[21]  Christopher Stewart,et al.  Multi-frequency, polarimetric SAR analysis for archaeological prospection , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[22]  Fulong Chen,et al.  Archeological crop marks identified from Cosmo-SkyMed time series: the case of Han-Wei capital city, Luoyang, China , 2017, Int. J. Digit. Earth.

[23]  Christopher Stewart,et al.  Deep Learning with Open Data for Desert Road Mapping , 2020, Remote. Sens..

[24]  Jixian Zhang Multi-source remote sensing data fusion: status and trends , 2010 .

[25]  A. Sarris,et al.  Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing , 2007 .

[26]  Athos Agapiou,et al.  Enhancement of Archaeological Proxies at Non-Homogenous Environments in Remotely Sensed Imagery , 2019, Sustainability.

[27]  F. El-Baz,et al.  Near-surface imaging of a buried foundation in the Western Desert, Egypt, using space-borne and ground penetrating radar , 2013 .

[28]  Karsten Lambers,et al.  Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection , 2019, Remote. Sens..

[29]  Eyal Ben-Dor,et al.  Airborne Thermal Video Radiometry and Excavation Planning at Tel Leviah, Golan Heights, Israel , 1999 .

[30]  R.J.A. Jones,et al.  Crop marks and soils at two archaeological sites in Britain , 1977 .

[31]  J. Demoule Rescue Archaeology: A European View , 2012 .

[32]  Hansi Senaratne,et al.  A review of volunteered geographic information quality assessment methods , 2017, Int. J. Geogr. Inf. Sci..

[33]  P. Patias,et al.  Comparative analysis on the archaeological content of imagery from Google Earth , 2011 .

[34]  A. Georgopoulos,et al.  Optimum temporal and spectral window for monitoring crop marks over archaeological remains in the Mediterranean region , 2013 .

[35]  G. Verhoeven,et al.  An attempt to push back frontiers – digital near-ultraviolet aerial archaeology , 2010 .

[36]  Christopher Stewart,et al.  Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications , 2016, Remote. Sens..

[37]  Christopher Stewart,et al.  Detection of Archaeological Residues in Vegetated Areas Using Satellite Synthetic Aperture Radar , 2017, Remote. Sens..

[38]  R. Lasaponara,et al.  Detection of archaeological crop marks by using satellite QuickBird multispectral imagery , 2007 .