On the stability properties of a Van der Pol–Duffing oscillator that is driven by a real noise

[1]  K. Liew,et al.  On the almost-sure stability condition for a co-dimension two-bifurcation system under the parametric excitation of a real noise , 2004 .

[2]  K. Liew,et al.  The Lyapunov exponent for a codimension two bifurcation system that is driven by a real noise , 2003 .

[3]  L. Arnold Random Dynamical Systems , 2003 .

[4]  K. Liew,et al.  Lyapunov exponents for two nonlinear systems driven by real noises , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  N. Sri Namachchivaya,et al.  Moment Lyapunov Exponent and Stochastic Stability of Two Coupled Oscillators Driven by Real Noise , 2001 .

[6]  Daniel Liberzon,et al.  Spectral Analysis of Fokker--Planck and Related Operators Arising From Linear Stochastic Differential Equations , 2000, SIAM J. Control. Optim..

[7]  N. Moshchuk,et al.  Moment Lyapunov Exponent and Stability Index for Linear Conservative System with Small Random Perturbation , 1998, SIAM J. Appl. Math..

[8]  N. Sri Namachchivaya,et al.  Moment Lyapunov Exponent for Two Coupled Oscillators Driven by Real Noise , 1996, SIAM J. Appl. Math..

[9]  R. Roy Stochastic averaging of oscillators excited by colored Gaussian processes , 1994 .

[10]  N. Sri Namachchivaya,et al.  Almost-sure asymptotic stability of a general four-dimensional system driven by real noise , 1994 .

[11]  N. Sri Namachchivaya,et al.  Maximal Lyapunov exponent and rotation numbers for two coupled oscillators driven by real noise , 1993 .

[12]  S. Ariaratnam,et al.  Lyapunov Exponents and Stochastic Stability of Coupled Linear Systems Under Real Noise Excitation , 1992 .

[13]  Zeev Schuss,et al.  Stochastic stability of nonlinear oscillators , 1988 .

[14]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[15]  Volker Wihstutz,et al.  Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and application , 1986 .

[16]  L. Arnold,et al.  A Formula Connecting Sample and Moment Stability of Linear Stochastic Systems , 1984 .

[17]  F. Kozin,et al.  Necessary and Sufficient Conditions for Almost Sure Sample Stability of Linear Ito Equations , 1971 .

[18]  N. Sri Namachchivaya,et al.  Small Noise Expansion of Moment Lyapunov Exponents for Two-Dimensional Systems , 1997 .

[19]  K. Nishioka On the stability of two-dimensional linear stochastic systems , 1976 .

[20]  R. Khas'minskii,et al.  Necessary and Sufficient Conditions for the Asymptotic Stability of Linear Stochastic Systems , 1967 .