The Computability Path Ordering: The End of a Quest

In this paper, we first briefly survey automated termination proof methods for higher-order calculi. We then concentrate on the higher-order recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture the essence of computability arguments a la Tait and Girard, therefore explaining the name of the improved ordering.

[1]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[2]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[3]  Paliath Narendran,et al.  On Recursive Path Ordering , 1985, Theor. Comput. Sci..

[4]  V. Breazu-Tannen,et al.  Combining algebra and higher-order types , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[5]  Mitsuhiro Okada,et al.  Strong normalizability for the combined system of the typed lmbda calculus and an arbitrary convergent term rewrite system , 1989, ISSAC '89.

[6]  Val Tannen,et al.  Polymorphic Rewriting Conserves Algebraic Strong Normalization and Confluence Val Tannen , 2011 .

[7]  Franco Barbanera,et al.  Adding Algebraic Rewriting to the Calculus of Constructions: Strong Normalization Preserved , 1990, CTRS.

[8]  Val Tannen,et al.  Polymorphic Rewriting Conserves Algebraic Strong Normalization , 1991, Theor. Comput. Sci..

[9]  Jean-Pierre Jouannaud,et al.  A computation model for executable higher-order algebraic specification languages , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[10]  Joachim Steinbach,et al.  Termination of Combined (Rewrite and lambda-Calculus) Systems , 1992, CTRS.

[11]  Daniel J. Dougherty Adding Algebraic Rewriting to the Untyped Lambda Calculus , 1992, Inf. Comput..

[12]  Jaco van de Pol,et al.  Termination Proofs for Higher-order Rewrite Systems , 1993, HOA.

[13]  Tobias Nipkow,et al.  Higher-Order Algebra, Logic, and Term Rewriting , 1993, Lecture Notes in Computer Science.

[14]  Maribel Fernández,et al.  Modularity of Termination and Confluence in Combinations of Rewrite Systems with lambda_omega , 1993, ICALP.

[15]  Maribel Fernández,et al.  Combining First and Higher Order Rewrite Systems with Type Assignment Systems , 1993, TLCA.

[16]  Herman Geuvers,et al.  Modularity of strong normalization and confluence in the algebraic-/spl lambda/-cube , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[17]  Helmut Schwichtenberg,et al.  Strict Functionals for Termination Proofs , 1995, TLCA.

[18]  Amr Sabry,et al.  Proving the correctness of reactive systems using sized types , 1996, POPL '96.

[19]  J. Jouannaud,et al.  Abstract Data Type Systems , 1997, Theor. Comput. Sci..

[20]  Albert Rubio,et al.  Rewrite Orderings for Higher-Order Terms in eta-Long beta-Normal Form and Recursive Path Ordering , 1998, Theor. Comput. Sci..

[21]  Jean-Pierre Jouannaud,et al.  Higher-order recursive path orderings , 1998 .

[22]  岩見 宗弘 Termination of higher-order rewrite systems , 1999 .

[23]  Albert Rubio,et al.  The higher-order recursive path ordering , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[24]  Wei-Ngan Chin,et al.  Calculating Sized Types , 1999, PEPM '00.

[25]  Frédéric Blanqui,et al.  Termination and Confluence of Higher-Order Rewrite Systems , 2000, RTA.

[26]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[27]  Albert Rubio,et al.  A Monotonic Higher-Order Semantic Path Ordering , 2001, LPAR.

[28]  Jean Goubault-Larrecq,et al.  Well-Founded Recursive Relations , 2001, CSL.

[29]  Frédéric Blanqui,et al.  Definitions by rewriting in the calculus of constructions , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[30]  Jean-Pierre Jouannaud,et al.  Higher-Order Recursive Path Orderings à la carte , 2001 .

[31]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[32]  Masahiko Sakai,et al.  An Extension of the Dependency Pair Method for Proving Termination of Higher-Order Rewrite Systems , 2001 .

[33]  Hongwei Xi Dependent Types for Program Termination Verification , 2002, High. Order Symb. Comput..

[34]  Jean-Pierre Jouannaud,et al.  Inductive-data-type systems , 2002, Theor. Comput. Sci..

[35]  Daria Walukiewicz-Chrzaszcz,et al.  Termination of rewriting in the Calculus of Constructions , 2003, Journal of Functional Programming.

[36]  C. Barry Jay,et al.  The pattern calculus , 2004, TOPL.

[37]  Jürgen Giesl,et al.  The Dependency Pair Framework: Combining Techniques for Automated Termination Proofs , 2005, LPAR.

[38]  Luís Pinto,et al.  Type-based termination of recursive definitions , 2004, Mathematical Structures in Computer Science.

[39]  Neil D. Jones,et al.  Termination Analysis of the Untyped lamba-Calculus , 2004, RTA.

[40]  Frédéric Blanqui A Type-Based Termination Criterion for Dependently-Typed Higher-Order Rewrite Systems , 2004, RTA.

[41]  Andreas Abel Termination checking with types , 2004, RAIRO Theor. Informatics Appl..

[42]  Frédéric Blanqui,et al.  Inductive types in the Calculus of Algebraic Constructions , 2003, Fundam. Informaticae.

[43]  Frédéric Blanqui Definitions by rewriting in the Calculus of Constructions , 2005, Math. Struct. Comput. Sci..

[44]  Masahiko Sakai,et al.  On Dependency Pair Method for Proving Termination of Higher-Order Rewrite Systems , 2001, IEICE Trans. Inf. Syst..

[45]  Jürgen Giesl,et al.  Automated Termination Analysis for Haskell: From Term Rewriting to Programming Languages , 2006, RTA.

[46]  Albert Rubio,et al.  Higher-Order Orderings for Normal Rewriting , 2006, RTA.

[47]  Albert Rubio,et al.  Higher-Order Termination: From Kruskal to Computability , 2006, LPAR.

[48]  Albert Rubio,et al.  Polymorphic higher-order recursive path orderings , 2007, JACM.

[49]  Martin Grohe The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2007, JACM.

[50]  Frédéric Blanqui,et al.  Computability Closure: Ten Years Later , 2007, Rewriting, Computation and Proof.

[51]  Albert Rubio,et al.  HORPO with Computability Closure: A Reconstruction , 2007, LPAR.

[52]  Albert Rubio,et al.  Orderings and Constraints: Theory and Practice of Proving Termination , 2007, Rewriting, Computation and Proof.