ZIRCONIUM, BARIUM, LANTHANUM, AND EUROPIUM ABUNDANCES IN OPEN CLUSTERS

We present an analysis of the s-process elements Zr, Ba, and La and the r-process element Eu in a sample of 50 stars in 19 open clusters. Stellar abundances of each element are based on measures of a minimum of two lines per species via both equivalent width and spectrum synthesis techniques. We investigate cluster mean neutron-capture abundance trends as a function of cluster age and location in the Milky Way disk and compare them to results found in other studies in the literature. We find a statistically significant trend of increasing cluster [Ba/Fe] as a function of decreasing cluster age, in agreement with recent findings for other open cluster samples, supporting the increased importance of low-mass asymptotic giant branch stars to the generation of s-process elements. However, the other s-process elements, [La/Fe] and [Zr/Fe], do not show similar dependences, in contrast to theoretical expectations and the limited observational data from other studies. Conversely, cluster [Eu/Fe] ratios show a slight increase with increasing cluster age, although with marginal statistical significance. Ratios of [s/r]-process abundances, [Ba/Eu] and [La/Eu], however, show more clearly the increasing efficiency of s-process relative to r-process enrichment in open cluster chemical evolution, with significant increases among younger clusters. Last, cluster neutron-capture element abundances appear to be independent of Galactocentric distance. We conclude that a homogeneous analysis of a larger sample of open clusters is needed to resolve the apparent discrepant conclusions between different studies regarding s-process element abundance trends with age to better inform models of galactic chemical evolution.

[1]  G. Carraro,et al.  THE UNIQUE Na:O ABUNDANCE DISTRIBUTION IN NGC 6791: THE FIRST OPEN(?) CLUSTER WITH MULTIPLE POPULATIONS , 2012, 1207.3328.

[2]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[3]  C. Sneden,et al.  CHEMICAL COMPOSITIONS OF THIN-DISK, HIGH-METALLICITY RED HORIZONTAL-BRANCH FIELD STARS , 2012, 1205.3659.

[4]  G. F. Porto de Mello,et al.  Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis , 2012, 1204.4433.

[5]  C. Kobayashi,et al.  CONSTRAINTS ON THE FORMATION OF THE GALACTIC BULGE FROM Na, Al, AND HEAVY-ELEMENT ABUNDANCES IN PLAUT's FIELD , 2012, 1202.4481.

[6]  S. Randich,et al.  NEWS ON THE s PROCESS FROM YOUNG OPEN CLUSTERS , 2011, 1112.5290.

[7]  D. Lambert,et al.  Comprehensive abundance analysis of red giants in the open clusters NGC 752, NGC 1817, NGC 2360 and NGC , 2011, 1109.2678.

[8]  E. Friel,et al.  A CHEMICAL ABUNDANCE STUDY OF 10 OPEN CLUSTERS BASED ON WIYN-HYDRA SPECTROSCOPY , 2011, 1107.4139.

[9]  Italy,et al.  Chemical abundance analysis of the open clusters Berkeley 32, NGC 752, Hyades, and Praesepe , 2011, 1107.2242.

[10]  S. Randich,et al.  s-PROCESSING IN THE GALACTIC DISK. I. SUPER-SOLAR ABUNDANCES OF Y, Zr, La, AND Ce IN YOUNG OPEN CLUSTERS , 2011, 1105.2208.

[11]  S. Meibom,et al.  A NEW LOOK AT THE OLD STAR CLUSTER NGC 6791 , 2011, 1104.5473.

[12]  Ž. Ivezić,et al.  THE GENESIS OF THE MILKY WAY'S THICK DISK VIA STELLAR MIGRATION , 2010, 1009.5997.

[13]  E. Friel,et al.  ABUNDANCES OF RED GIANTS IN OLD OPEN CLUSTERS. V. Be 31, Be 32, Be 39, M 67, NGC 188, AND NGC 1193 , 2010 .

[14]  Roberto Gallino,et al.  THE WEAK s-PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS , 2010 .

[15]  E. Rossetti,et al.  Chemical abundance analysis of the open clusters Cr 110, NGC 2099 (M 37), NGC 2420, NGC 7789, and M 67 (NGC 2682) , 2009, 0910.0723.

[16]  S. Bisterzo,et al.  Galactic Chemical Evolution of the s Process from AGB Stars , 2009, Publications of the Astronomical Society of Australia.

[17]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[18]  E. Friel,et al.  ABUNDANCES OF RED GIANTS IN OLD OPEN CLUSTERS. IV. NGC 1817, NGC 1883, NGC 2141, AND NGC 2158 , 2009 .

[19]  Italy.,et al.  ENHANCED PRODUCTION OF BARIUM IN LOW-MASS STARS: EVIDENCE FROM OPEN CLUSTERS , 2009, 0901.2743.

[20]  Laura Magrini,et al.  The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters , 2008, 0812.0854.

[21]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[22]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[23]  E. Friel,et al.  ABUNDANCES OF RED GIANTS IN OLD OPEN CLUSTERS. III. NGC 7142 , 2008 .

[24]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[25]  E. Friel,et al.  Na, Al, and O Abundances of Open Clusters NGC 7142, NGC 6939, and IC 4756 , 2007 .

[26]  G. Carraro,et al.  The anticentre old open cluster NGC 1883 : radial velocity and metallicity , 2007, 0705.2300.

[27]  Eső,et al.  BVI photometry of the very old open cluster Berkeley 17 , 2006, astro-ph/0603050.

[28]  E. Friel,et al.  Abundances of Red Giants in Old Open Clusters. II. Berkeley 17 , 2005 .

[29]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. I. Open Clusters , 2005, astro-ph/0504193.

[30]  Potsdam,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[31]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[32]  A. Bragaglia,et al.  UBVI photometry of the intermediate‐age open cluster NGC 6939 , 2003, astro-ph/0311249.

[33]  C. Prieto,et al.  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[34]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[35]  J. Lawler,et al.  Improved Laboratory Transition Parameters forEu II and Application to the Solar Europium Elemental and Isotopic Composition , 2001 .

[36]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[37]  J. Lawler,et al.  Experimental Radiative Lifetimes, Branching Fractions, and Oscillator Strengths for La II and a New Determination of the Solar Lanthanum Abundance , 2001 .

[38]  V. Smith,et al.  Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances , 2001, astro-ph/0104424.

[39]  J. Prochaska,et al.  The Galactic Thick Disk Stellar Abundances , 2000, astro-ph/0008075.

[40]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants , 2000, astro-ph/0005188.

[41]  K. Cunha,et al.  The Chemical Evolution of the Globular Cluster ω Centauri (NGC 5139) , 2000 .

[42]  G. Wasserburg,et al.  Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation , 1999 .

[43]  A. McWilliam Barium Abundances in Extremely Metal-poor Stars , 1998 .

[44]  E. Friel,et al.  Kinematics of the Old Open Cluster System , 1995 .

[45]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .

[46]  K. Janes,et al.  The Galactic System of Old Star Clusters: The Development of the Galactic Disk , 1994 .

[47]  R. Kurucz,et al.  The nonsolar abundance ratios of Arcturus deduced from spectrum synthesis , 1993 .

[48]  C. Sneden,et al.  Oxygen abundances in halo giants. I : giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field , 1991 .

[49]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .