Spatial Decorrelation in GNSS-Based SAR Coherent Change Detection

This paper analyzes the spatial decorrelation between repeat-pass bistatic synthetic aperture radar (BSAR) images with Global Navigation Satellite Systems as transmitters and a fixed receiver. This study is needed in the development of such a system to monitor temporal changes in a scene. The main challenge is that, in this bistatic configuration, spatial coherence heavily depends on the data acquisition geometry. The appropriate theoretical framework to describe spatial coherence for this case is developed by extending well-established monostatic models and, in principle, can be applied to any fixed-receiver BSAR with a spaceborne transmitter. Theoretical results are initially supported by Monte Carlo simulations. Finally, the validity of the model is confirmed by comparing real images.

[1]  Mikhail Cherniakov,et al.  GNSS-based bistatic SAR: a signal processing view , 2013, EURASIP J. Adv. Signal Process..

[2]  Joachim H. G. Ender,et al.  Bistatic SAR Processing and Experiments , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  Mikhail Cherniakov,et al.  Passive bistatic synthetic aperture radar imaging with Galileo transmitters and a moving receiver: experimental demonstration , 2013 .

[5]  Joachim H. G. Ender,et al.  Bistatic SAR Experiments With PAMIR and TerraSAR-X—Setup, Processing, and Image Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Mikhail Cherniakov,et al.  Experimental Demonstration of Passive BSAR Imaging Using Navigation Satellites and a Fixed Receiver , 2012, IEEE Geoscience and Remote Sensing Letters.

[7]  Douglas A. Gray,et al.  Bistatic SAR Experiment with the Ingara Imaging Radar: Preliminary Results , 2008 .

[8]  Gerhard Krieger,et al.  Bistatic TerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, Data Processing, and Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Mikhail Cherniakov,et al.  Results of a Space-Surface Bistatic SAR Image Formation Algorithm , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Tao Zeng,et al.  Generalized approach to resolution analysis in BSAR , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Mikhail Cherniakov,et al.  Space-surface bistatic synthetic aperture radar with global navigation satellite system transmitter of opportunity-experimental results , 2007 .

[12]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[13]  Gang Liu,et al.  Error Analysis of Bistatic SAR Imaging and Stereoscopy Bistatic SAR , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Richard M. Goldstein,et al.  Studies of multibaseline spaceborne interferometric synthetic aperture radars , 1990 .

[15]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[16]  Mikhail Cherniakov,et al.  Point Spread Function Analysis for BSAR With GNSS Transmitters and Long Dwell Times: Theory and Experimental Confirmation , 2013, IEEE Geoscience and Remote Sensing Letters.

[17]  Albert Aguasca,et al.  SABRINA: A SAR Bistatic Receiver for Interferometric Applications , 2007, IEEE Geoscience and Remote Sensing Letters.

[18]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[19]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[20]  Zheng Bao,et al.  Improving Coherence of Complex Image Pairs Obtained by Along-Track Bistatic SARs Using Range–Azimuth Prefiltering , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[22]  M. Preiss,et al.  Coherent Change Detection: Theoretical Description and Experimental Results , 2006 .

[23]  Paco López-Dekker,et al.  Repeat-pass interferometry using a fixed-receiver and ERS-2/ENVISAT as transmitters of opportunity , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[24]  M. Cherniakov,et al.  Passive Space-Surface Bistatic SAR for local area monitoring: Primary feasibility study , 2009, 2009 European Radar Conference (EuRAD).

[25]  Claudio Prati,et al.  Improving slant-range resolution with multiple SAR surveys , 1993 .

[26]  M. Cherniakov,et al.  Bistatic radar : emerging technology , 2008 .

[27]  Mikhail Cherniakov,et al.  Space‐Surface Bistatic SAR , 2008 .

[28]  Paco López-Dekker,et al.  Single-Pass Bistatic SAR Interferometry Using Fixed-Receiver Configurations: Theory and Experimental Validation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Michail Antoniou,et al.  Coherent Change Detection Using Passive GNSS-Based BSAR: Experimental Proof of Concept , 2013, IEEE Transactions on Geoscience and Remote Sensing.