A 300-J multigigawatt CO 2 laser

The development of a new transverse electric discharge scheme has permitted the excitation of large volumes of CO 2 , N 2 , and He mixtures with beam cross sections up to 60 cm2in area. The scheme utilizes as a preionizer a sheet of small arc discharges produced prior to the main discharge and situated behind a perforated anode. Time-resolved photography establishes that rapid volumetric ionization of the gas between the electrodes occurs concurrent with the formation of these arcs. This behavior is consistent with a preionization mechanism depending upon UV photo-excitation of the gas. A parametric study has shown that reproducible discharge conditions in 30 percent CO 2 gas mixtures are obtained with input energies of >300 J.I-1, resulting in energy extraction efficiencies of ∼10 percent and an average small-signal gain of ∼4.3 percent cm-1. The laser is modular in construction and, when a number of discharge modules are employed in series in a simple oscillator configuration, energies of ∼300 J with peak powers of several gigawatts are obtained.

[1]  David C. Smith,et al.  Gas breakdown in the laser as the limitation of pulsed high‐pressure CO2 lasers , 1972 .

[2]  O. Wood,et al.  A simple self-mode-locked atmospheric pressure CO 2 laser , 1972 .

[3]  S. Ramsden,et al.  Single transverse mode operation of a pulsed volume excited atmospheric pressure CO2 laser using an unstable resonator , 1972 .

[4]  K. Boyer,et al.  Parametric studies of the electron-beam-controlled discharge in CO 2 laser media , 1972 .

[5]  N. Basov Electroionization lasers , 1972 .

[6]  S. Rockwood,et al.  CO 2 laser air breakdown calculations , 1972 .

[7]  A. Bernhardt,et al.  Construction and Operation of a Double‐Discharge TEA CO2 Laser , 1972 .

[8]  F. Rheault,et al.  Double-Discharge TEA Laser Beams , 1972 .

[9]  W. McKnight,et al.  Performance of high-voltage axially pulsed CO 2 lasers , 1972 .

[10]  R. Dumanchin,et al.  Extension of TEA CO 2 laser capabilities , 1972 .

[11]  K. Boyer,et al.  Electron‐Beam‐Controlled Electrical Discharge as a Method of Pumping Large Volumes of CO2 Laser Media at High Pressure , 1972 .

[12]  David C. Smith,et al.  Gas‐Breakdown Dependence on Beam Size and Pulse Duration with 10.6‐μ Wavelength Radiation , 1971 .

[13]  D. Pellinen,et al.  A Nanosecond Risetime Megampere Current Monitor , 1971 .

[14]  R. K. Garnsworthy,et al.  Atmospheric‐Pressure Pulsed CO2 Laser Utilizing Preionization by High‐Energy Electrons , 1971 .

[15]  O. Farish,et al.  High-pressure pulsed carbon-dioxide laser with uniform excitation , 1971 .

[16]  P. Pearson,et al.  Atmospheric pressure CO 2 lasers giving high output energy per unit volume , 1971 .

[17]  H. Lamberton,et al.  Output pulse characteristics and self mode locking of atmospheric-pressure CO2 lasers , 1971 .

[18]  A. F. Suchkov,et al.  High-pressure pulsed CO2 laser , 1971 .

[19]  P. R. Pearson,et al.  Improved excitation techniques for atmospheric pressure CO2 lasers , 1971 .

[20]  A. Laflamme Double discharge excitation for atmospheric pressure CO2 lasers , 1970 .

[21]  A. J. Beaulieu,et al.  TRANSVERSELY EXCITED ATMOSPHERIC PRESSURE CO2 LASERS , 1970 .

[22]  A. E. Hill MULTIJOULE PULSES FROM CO2 LASERS , 1968 .

[23]  C. Frapard,et al.  High peak power pulsed 10μ CO2 laser , 1966 .

[24]  Donald A. Leonard,et al.  Saturation of the molecular nitrogen second positive laser transition , 1965 .

[25]  Y. Afanas’ev,et al.  Optical Breakdown of Molecular Gases , 1972 .

[26]  J. Lachambre A Pyroelectric Energy Meter , 1971 .