Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum

The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired.

[1]  G. N. Hannan,et al.  Estimating genotyping error rates from Mendelian errors in SNP array genotypes and their impact on inference. , 2007, Genomics.

[2]  S. Boulton,et al.  The choice in meiosis – defining the factors that influence crossover or non-crossover formation , 2011, Journal of Cell Science.

[3]  F. Baudat,et al.  Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis , 2007, Chromosome Research.

[4]  B. Rannala,et al.  Meiotic gene-conversion rate and tract length variation in the human genome. , 2013, European journal of human genetics : EJHG.

[5]  L. Ranford-Cartwright,et al.  Analysis of malaria parasite phenotypes using experimental genetic crosses of Plasmodium falciparum , 2012, International journal for parasitology.

[6]  S. Lovett Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences , 2004, Molecular microbiology.

[7]  L. Ranford-Cartwright,et al.  Proof of intragenic recombination in Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[8]  G. McVean,et al.  Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome , 2007, Nature Genetics.

[9]  Chaya D. Stern,et al.  Direct evidence for the adaptive role of copy number variation on antifolate susceptibility in Plasmodium falciparum , 2013, Molecular microbiology.

[10]  Hadi Quesneville,et al.  Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots". , 2005, Genome research.

[11]  Mihir Kekre,et al.  Generation of Antigenic Diversity in Plasmodium falciparum by Structured Rearrangement of Var Genes During Mitosis , 2014, PLoS genetics.

[12]  T. Rossman,et al.  Mutagenesis and comutagenesis by lead compounds. , 1992, Mutation research.

[13]  X. Su,et al.  Genetic linkage and association analyses for trait mapping in Plasmodium falciparum , 2007, Nature Reviews Genetics.

[14]  W. Haerty,et al.  Increased Polymorphism Near Low-Complexity Sequences across the Genomes of Plasmodium falciparum Isolates , 2011, Genome biology and evolution.

[15]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[16]  L. Steinmetz,et al.  High-resolution mapping of meiotic crossovers and non-crossovers in yeast , 2008, Nature.

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  Martijn A. Huynen,et al.  Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity , 2008, PLoS pathogens.

[19]  Lisa Checkley,et al.  The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross , 2011, BMC Genomics.

[20]  A. Jeffreys,et al.  Intense and highly localized gene conversion activity in human meiotic crossover hot spots , 2004, Nature Genetics.

[21]  P. Donnelly,et al.  A Fine-Scale Map of Recombination Rates and Hotspots Across the Human Genome , 2005, Science.

[22]  Junichi Watanabe,et al.  Core promoters are predicted by their distinct physicochemical properties in the genome of Plasmodium falciparum , 2008, Genome Biology.

[23]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[24]  M. Kreitman,et al.  Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria. , 2009, Molecular biology and evolution.

[25]  M. Colaiácovo,et al.  Distribution of meiotic recombination events: talking to your neighbors. , 2009, Current opinion in genetics & development.

[26]  Mark Gerstein,et al.  The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes , 2013, Genome research.

[27]  Z. Ning,et al.  Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes , 2009, Nature Methods.

[28]  J C Wootton,et al.  A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.

[29]  D. Serre,et al.  Single-cell genomics for dissection of complex malaria infections , 2014, Genome research.

[30]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[31]  M. Schatz,et al.  Reducing INDEL calling errors in whole genome and exome sequencing data , 2014, Genome Medicine.

[32]  Kyle T. Siebenthall,et al.  Genome variation and evolution of the malaria parasite Plasmodium falciparum , 2007, Nature Genetics.

[33]  G. McVean,et al.  De novo assembly and genotyping of variants using colored de Bruijn graphs , 2011, Nature Genetics.

[34]  Samuel A. Assefa,et al.  A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data , 2013, BMC Genomics.

[35]  T. Wellems,et al.  Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Cameron,et al.  Regression-based tests for overdispersion in the Poisson model☆ , 1990 .

[37]  P. Rosenthal The interplay between drug resistance and fitness in malaria parasites , 2013, Molecular microbiology.

[38]  G Harauz,et al.  Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. , 1994, Genetics.

[39]  John C. Tan,et al.  Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing , 2012, Nature.

[40]  S. Schaffner,et al.  Modeling malaria genomics reveals transmission decline and rebound in Senegal , 2015, Proceedings of the National Academy of Sciences.

[41]  M. DePristo,et al.  Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. , 2010, Molecular biology and evolution.

[42]  P. Newton,et al.  Adaptive Copy Number Evolution in Malaria Parasites , 2008, PLoS genetics.

[43]  K. Robasky,et al.  The role of replicates for error mitigation in next-generation sequencing , 2013, Nature Reviews Genetics.

[44]  A. Burt,et al.  Conservation of recombination hotspots in yeast , 2010, Proceedings of the National Academy of Sciences.

[45]  Mark A DePristo,et al.  On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins. , 2006, Gene.

[46]  Geoffrey L. Johnston,et al.  Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families , 2013, PLoS genetics.

[47]  Vivek Gopalan,et al.  High recombination rates and hotspots in a Plasmodium falciparum genetic cross , 2011, Genome Biology.

[48]  Blaise T. F. Alako,et al.  Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors , 2009, PLoS pathogens.

[49]  X. Su,et al.  Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. , 1996, Genomics.

[50]  P. Hastings Mechanism and control of recombination in fungi. , 1992, Mutation research.

[51]  Gilean McVean,et al.  Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia , 2013, Nature Genetics.

[52]  Danny E. Miller,et al.  A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster , 2012, G3: Genes | Genomes | Genetics.

[53]  Thomas E. Wellems,et al.  Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross , 1990, Nature.

[54]  T. Burkot,et al.  Genetic analysis of the human malaria parasite Plasmodium falciparum. , 1987, Science.

[55]  Daniel E. Goldberg,et al.  Asparagine Repeats in Plasmodium falciparum Proteins: Good for Nothing? , 2013, PLoS pathogens.

[56]  F. Kondrashov Gene duplication as a mechanism of genomic adaptation to a changing environment , 2012, Proceedings of the Royal Society B: Biological Sciences.

[57]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[58]  S. Wuchty,et al.  Regulatory Hotspots in the Malaria Parasite Genome Dictate Transcriptional Variation , 2008, PLoS biology.

[59]  E. Nevo,et al.  Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review , 2002, Molecular ecology.

[60]  D. Hartl,et al.  Evolution of allelic dimorphism in malarial surface antigens , 2008, Heredity.

[61]  Philip Montgomery,et al.  Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence , 2008, Genome Biology.

[62]  T. Wellems,et al.  An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. , 1992, Molecular and biochemical parasitology.

[63]  Gavin Sherlock,et al.  Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure , 2013, Genome Biology.

[64]  A. P. Tonon,et al.  Sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-1 (MSP-1) of Plasmodium falciparum. , 2003, Gene.

[65]  John C. Tan,et al.  High-throughput 454 resequencing for allele discovery and recombination mapping in Plasmodium falciparum , 2011, BMC Genomics.

[66]  Zbynek Bozdech,et al.  Structural polymorphism in the promoter of pfmrp2 confers Plasmodium falciparum tolerance to quinoline drugs , 2014, Molecular microbiology.

[67]  F. Nosten,et al.  Recurrent gene amplification and soft selective sweeps during evolution of multidrug resistance in malaria parasites. , 2006, Molecular biology and evolution.

[68]  Asako Tan,et al.  Variable Numbers of Tandem Repeats in Plasmodium falciparum Genes , 2010, Journal of Molecular Evolution.

[69]  M. Ferdig,et al.  Gene copy number and malaria biology. , 2009, Trends in parasitology.

[70]  D. Griffin,et al.  Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. , 2010, Genome research.

[71]  A. Cowman,et al.  Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Llinás,et al.  Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites , 2013, Cellular microbiology.

[73]  J. López-Moya,et al.  Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. , 2007, The Journal of general virology.

[74]  Yaniv Erlich,et al.  Abundant contribution of short tandem repeats to gene expression variation in humans , 2015, Nature Genetics.

[75]  Deepak Gaur,et al.  Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. , 2008, Cell host & microbe.

[76]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[77]  Yingyao Zhou,et al.  A Systematic Map of Genetic Variation in Plasmodium falciparum , 2006 .

[78]  W. Pearson,et al.  Current Protocols in Bioinformatics , 2002 .

[79]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.