On reconstruction of Lamé coefficients from partial Cauchy data

Abstract For the isotropic Lamé system we prove that if the Lamé coefficient μ is a positive constant, both Lamé coefficients may be recovered from the partial Cauchy data.

[1]  John Sylvester,et al.  A uniqueness theorem for an inverse boundary value problem in electrical prospection , 1986 .

[2]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[3]  Michael Taylor,et al.  Pseudodifferential Operators and Nonlinear PDE , 1991 .

[4]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[5]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[6]  G. Nakamura,et al.  Identification of Lame coefficients from boundary observations , 1991 .

[7]  G. Uhlmann,et al.  IDENTIFICATION OF LAME PARAMETERS BY BOUNDARY MEASUREMENTS , 1993 .

[8]  Masahiro Yamamoto,et al.  Determination of second-order elliptic operators in two dimensions from partial Cauchy data , 2010, Proceedings of the National Academy of Sciences.

[9]  G. Temple,et al.  Generalized Analytic Functions , 1964 .

[10]  Masaru Ikehata,et al.  Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection , 1990 .

[11]  James Ralston,et al.  On the inverse boundary value problem for linear isotropic elasticity , 2002 .

[12]  Masahiro Yamamoto,et al.  The Calderón problem with partial data in two dimensions , 2010 .

[13]  G. Uhlmann,et al.  Global uniqueness for an inverse boundary value problem arising in elasticity , 1994 .

[14]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[15]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[16]  Masahiro Yamamoto,et al.  Carleman estimate for a stationary isotropic Lamé system and the applications , 2004 .