The Size of the Largest Antichain in the Partition Lattice
暂无分享,去创建一个
[1] L. Harper. Stirling Behavior is Asymptotically Normal , 1967 .
[2] James B. Shearer,et al. A simple counterexample to a conjecture of Rota , 1979, Discret. Math..
[3] Peter Frankl,et al. A generalization of Sperner's theorem , 1981 .
[4] R. C. Mullin. On rota's problem concerning partitions , 1968 .
[5] L. H. Harper. On a continuous analog of Sperner’s problem , 1985 .
[6] K. Engel. Sperner Theory , 1996 .
[7] Konrad Engel,et al. Optimal Representations of Partially Ordered Sets and a Limit Sperner Theorem , 1986, Eur. J. Comb..
[8] Curtis Greene,et al. A Counterexample to the Generalization of Sperner’s Theorem , 1971 .
[9] Ronald L. Graham,et al. Some Results on Matching in Bipartite Graphs , 1969 .
[10] Boris G. Pittel,et al. Random Set Partitions: Asymptotics of Subset Counts , 1997, J. Comb. Theory, Ser. A.
[11] L. H. Harper. A Simpliied Guide to Large Antichains in the Partition Lattice , 1999 .
[12] K. A. Baker,et al. A generalization of Sperner's lemma , 1969 .
[13] E. Rodney Canfield. On a problem of rota , 1978 .
[14] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[15] Simon Tavare,et al. Independent Process Approximations for Random Combinatorial Structures , 1994, 1308.3279.
[16] E. Rodney Canfield,et al. Large Antichains in the Partition Lattice , 1995, Random Struct. Algorithms.
[17] Daniel J. Kleitman,et al. Maximal sized antichains in partial orders , 1971, Discret. Math..