The Size of the Largest Antichain in the Partition Lattice

Consider the poset?nof partitions of ann-element set, ordered by refinement. The sizes of the various ranks within this poset are the Stirling numbers of the second kind. Leta=12?elog(2)/4. We prove the following upper bound for the ratio of the size of the largest antichain to the size of the largest rank:d(?n?)S(n,Kn)?c2na(logn)?a?1/4,for suitable constantc2andn>1. This upper bound exceeds the best known lower bound for the latter ratio by a multiplicative factor ofO(1).

[1]  L. Harper Stirling Behavior is Asymptotically Normal , 1967 .

[2]  James B. Shearer,et al.  A simple counterexample to a conjecture of Rota , 1979, Discret. Math..

[3]  Peter Frankl,et al.  A generalization of Sperner's theorem , 1981 .

[4]  R. C. Mullin On rota's problem concerning partitions , 1968 .

[5]  L. H. Harper On a continuous analog of Sperner’s problem , 1985 .

[6]  K. Engel Sperner Theory , 1996 .

[7]  Konrad Engel,et al.  Optimal Representations of Partially Ordered Sets and a Limit Sperner Theorem , 1986, Eur. J. Comb..

[8]  Curtis Greene,et al.  A Counterexample to the Generalization of Sperner’s Theorem , 1971 .

[9]  Ronald L. Graham,et al.  Some Results on Matching in Bipartite Graphs , 1969 .

[10]  Boris G. Pittel,et al.  Random Set Partitions: Asymptotics of Subset Counts , 1997, J. Comb. Theory, Ser. A.

[11]  L. H. Harper A Simpliied Guide to Large Antichains in the Partition Lattice , 1999 .

[12]  K. A. Baker,et al.  A generalization of Sperner's lemma , 1969 .

[13]  E. Rodney Canfield On a problem of rota , 1978 .

[14]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[15]  Simon Tavare,et al.  Independent Process Approximations for Random Combinatorial Structures , 1994, 1308.3279.

[16]  E. Rodney Canfield,et al.  Large Antichains in the Partition Lattice , 1995, Random Struct. Algorithms.

[17]  Daniel J. Kleitman,et al.  Maximal sized antichains in partial orders , 1971, Discret. Math..