Using Bilingual Segments to Improve Interactive Machine Translation

Recent research on machine translation has achieved substantial progress. However, the machine translation results are still not error-free, and need to be post-edited by a human translator (user) to produce correct translations. Interactive machine translation enhanced the human-computer collaboration through having human validate the longest correct prefix in the suggested translation. In this paper, we refine the interactivity protocol to provide more natural collaboration. Users are allowed to validate bilingual segments, which give more direct guidance to the decoder and more hints to the users. Besides, validating bilingual segments is easier than identifying correct segments from the incorrect translations. Experimental results with real users show that the new protocol improved the translation efficiency and translation quality on three Chinese-English translation tasks.

[1]  Jeffrey Heer,et al.  Predictive translation memory: a mixed-initiative system for human language translation , 2014, UIST.

[2]  Hermann Ney,et al.  Efficient Search for Interactive Statistical Machine Translation , 2003, EACL.

[3]  Francisco Casacuberta,et al.  Online Learning for Interactive Statistical Machine Translation , 2010, NAACL.

[4]  Francisco Casacuberta,et al.  Statistical Phrase-Based Models for Interactive Computer-Assisted Translation , 2006, ACL.

[5]  Francisco Casacuberta,et al.  Interactive Machine Translation Based on Partial Statistical Phrase-based Alignments , 2009, RANLP.

[6]  Jeffrey Heer,et al.  Human Effort and Machine Learnability in Computer Aided Translation , 2014, EMNLP.

[7]  Germán Sanchis-Trilles,et al.  Improving Interactive Machine Translation via Mouse Actions , 2008, EMNLP.

[8]  Francisco Casacuberta,et al.  Balancing User Effort and Translation Error in Interactive Machine Translation via Confidence Measures , 2010, ACL.

[9]  Hermann Ney,et al.  Application of word-level confidence measures in interactive statistical machine translation , 2005, EAMT.

[10]  Francisco Casacuberta,et al.  Improving on-line handwritten recognition in interactive machine translation , 2014, Pattern Recognit..

[11]  Mauro Cettolo,et al.  IRSTLM: an open source toolkit for handling large scale language models , 2008, INTERSPEECH.

[12]  Pascual Martínez-Gómez,et al.  On multimodal interactive machine translation using speech recognition , 2011, ICMI '11.

[13]  Francisco Casacuberta,et al.  Active learning for interactive machine translation , 2012, EACL.

[14]  John DeNero,et al.  Models and Inference for Prefix-Constrained Machine Translation , 2016, ACL.

[15]  Shujian Huang,et al.  PRIMT: A Pick-Revise Framework for Interactive Machine Translation , 2016, NAACL.

[16]  Rohit Kumar,et al.  Lightly supervised word-sense translation-error detection and resolution in an interactive conversational spoken language translation system , 2015, Machine Translation.

[17]  Francisco Casacuberta,et al.  Interactive neural machine translation , 2017, Comput. Speech Lang..

[18]  Hermann Ney,et al.  Statistical Approaches to Computer-Assisted Translation , 2009, CL.

[19]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[20]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[21]  Francisco Casacuberta,et al.  Beyond Prefix-Based Interactive Translation Prediction , 2016, CoNLL.

[22]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[23]  Yu Zhou,et al.  A New Input Method for Human Translators: Integrating Machine Translation Effectively and Imperceptibly , 2015, IJCAI.

[24]  Francisco Casacuberta,et al.  From Machine Translation to Computer Assisted Translation using Finite-State Models , 2004, EMNLP.

[25]  Francisco Casacuberta,et al.  Interactive Machine Translation using Hierarchical Translation Models , 2013, EMNLP.

[26]  Philipp Koehn,et al.  Refinements to Interactive Translation Prediction Based on Search Graphs , 2014, ACL.

[27]  Pierre Isabelle,et al.  Target-Text Mediated Interactive Machine Translation , 2004, Machine Translation.

[28]  Guiping Zhang,et al.  Interactive-Predictive Machine Translation based on Syntactic Constraints of Prefix , 2016, COLING.

[29]  Daniel Ortiz-Martínez Online Learning for Statistical Machine Translation , 2016, Computational Linguistics.

[30]  Francisco Casacuberta,et al.  User Evaluation of Interactive Machine Translation Systems , 2012, EAMT.

[31]  Germán Sanchis-Trilles,et al.  Interactive translation prediction versus conventional post-editing in practice: a study with the CasMaCat  workbench , 2014, Machine Translation.