On flags and fuzzy subspaces of vector spaces

This paper deals with fuzzy subspaces of a vector space in terms of flags. We define the operations sum, product, tensor product, Hom, and intersection of fuzzy subspaces and in each case we characterise the corresponding flag. Some of these have been considered in the literature in different context. The novelty of this paper is in the use of flags as primary tool to study fuzzy subspaces.

[1]  R. Lowen Convex fuzzy sets , 1980 .

[2]  R. Tennant Algebra , 1941, Nature.

[3]  P. Lubczonok Fuzzy vector spaces , 1990 .

[4]  John N. Mordeson,et al.  Bases of fuzzy vector spaces , 1993, Inf. Sci..

[5]  K. S. Abdukhalikov,et al.  The dual of a fuzzy subspace , 1996, Fuzzy Sets Syst..

[6]  K. Abdukhalikov,et al.  On fuzzy bases of vector spaces , 1994 .

[7]  A. Katsaras,et al.  Fuzzy vector spaces and fuzzy topological vector spaces , 1977 .

[8]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[9]  K. Abdukhalikov,et al.  Fuzzy Linear Maps , 1998 .