Discrete variational integrators and optimal control theory
暂无分享,去创建一个
[1] J. Marsden,et al. Symplectic-energy-momentum preserving variational integrators , 1999 .
[2] Anthony M. Bloch,et al. Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.
[3] Frank L. Lewis,et al. Optimal Control , 1986 .
[4] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[5] A. Bobenko,et al. Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .
[6] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[7] 俊治 杉江. IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control , 2000 .
[8] B. W. Jordan,et al. Theory of a Class of Discrete Optimal Control Systems , 1964 .
[9] E. Hairer,et al. Structure-Preserving Algorithms for Ordinary Differential Equations , 2006 .
[10] Mark J. Gotay,et al. Presymplectic lagrangian systems. I : the constraint algorithm and the equivalence theorem , 1979 .
[11] U. Nottingham,et al. Principles of discrete time mechanics: II. Classical field theory , 1997, hep-th/9703080.
[12] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[13] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[14] J. Marsden,et al. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .
[15] David Martín de Diego,et al. Geometric Numerical Integration of Nonholonomic Systems and Optimal Control Problems , 2004, Eur. J. Control.
[16] M. de Leon,et al. Variational integrators and time-dependent lagrangian systems , 2002 .
[17] Symplectic Structure of Discrete Hamiltonian Systems , 2002 .
[18] F. Pirani. MATHEMATICAL METHODS OF CLASSICAL MECHANICS (Graduate Texts in Mathematics, 60) , 1982 .
[19] M. de Leon,et al. Geometric integrators and nonholonomic mechanics , 2002 .
[20] A. Bobenko,et al. Discrete Lagrangian Reduction, Discrete Euler–Poincaré Equations, and Semidirect Products , 1999, math/9906108.
[21] L. Erbe,et al. Disconjugacy for linear Hamiltonian difference systems , 1992 .
[22] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[23] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[24] D. D. Diego,et al. TIME-DEPENDENT CONSTRAINED HAMILTONIAN SYSTEMS AND DIRAC BRACKETS , 1996 .
[25] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[26] M. León,et al. The constraint algorithm for time-dependent Lagrangians , 1994 .
[27] Jorge Cortes,et al. Non-holonomic integrators , 2001 .
[28] James A. Cadzow,et al. Discrete calculus of variations , 1970 .
[29] J. Moser,et al. Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .
[30] C. Ahlbrandt. Equivalence of Discrete Euler Equations and Discrete Hamiltonian Systems , 1993 .
[31] T. D. Lee,et al. Can time be a discrete dynamical variable , 1983 .
[32] J. Marsden,et al. Time‐discretized variational formulation of non‐smooth frictional contact , 2002 .
[33] Jorge Cortes. Geometric, Control and Numerical Aspects of Nonholonomic Systems , 2002 .
[34] T. D. Lee,et al. Difference equations and conservation laws , 1987 .
[35] Principles of discrete time mechanics: III. Quantum field theory , 1997, hep-th/9707029.
[36] G. Jaroszkiewicz,et al. Principles of discrete time mechanics: I. Particle systems , 1997, hep-th/9703079.