Modelling discrete longitudinal data using acyclic probabilistic finite automata
暂无分享,去创建一个
[1] Francisco Casacuberta,et al. Probabilistic finite-state machines - part I , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[3] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[4] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[5] Stanley P. Azen,et al. Computational Statistics and Data Analysis (CSDA) , 2006 .
[6] A. Raftery,et al. Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model , 1994 .
[7] John T. Kent,et al. The underlying structure of nonnested hypothesis tests , 1986 .
[8] Gilbert Ritschard,et al. Analyzing and Visualizing State Sequences in R with TraMineR , 2011 .
[9] David Edwards,et al. Context-specific graphical models for discrete longitudinal data , 2013, 1311.5066.
[10] B. Browning,et al. Efficient multilocus association testing for whole genome association studies using localized haplotype clustering , 2007, Genetic epidemiology.
[11] S. Christiansen,et al. Genetic analysis of the obligate parasitic barley powdery mildew fungus based on RFLP and virulence loci , 1990, Theoretical and Applied Genetics.
[12] Sharon R Browning,et al. Multilocus association mapping using variable-length Markov chains. , 2006, American journal of human genetics.
[13] P. Bühlmann,et al. Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .
[14] D. Edwards. Introduction to graphical modelling , 1995 .
[15] Jim Q. Smith,et al. Conditional independence and chain event graphs , 2008, Artif. Intell..
[16] Craig Boutilier,et al. Context-Specific Independence in Bayesian Networks , 1996, UAI.
[17] Dana Ron,et al. On the learnability and usage of acyclic probabilistic finite automata , 1995, COLT '95.
[18] Olga G. Troyanskaya,et al. BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm332 Data and text mining , 2022 .
[19] Colin de la Higuera,et al. Probabilistic DFA Inference using Kullback-Leibler Divergence and Minimality , 2000, ICML.
[20] Brian D. Ripley,et al. Pattern Recognition and Neural Networks , 1996 .
[21] Francisco Casacuberta,et al. Probabilistic finite-state machines - part II , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[22] P. Diggle,et al. Analysis of Longitudinal Data. , 1997 .
[23] D. Edwards. Linkage analysis using loglinear models , 1992 .
[24] Dana Ron,et al. On the learnability and usage of acyclic probabilistic finite automata , 1995, COLT '95.
[25] David Edwards,et al. Modelling and visualizing fine-scale linkage disequilibrium structure , 2013, BMC Bioinformatics.
[26] G. Molenberghs,et al. Models for Discrete Longitudinal Data , 2005 .
[27] B. Browning,et al. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.
[28] José Oncina,et al. Learning Stochastic Regular Grammars by Means of a State Merging Method , 1994, ICGI.
[29] Peter Bühlmann,et al. Model Selection for Variable Length Markov Chains and Tuning the Context Algorithm , 2000 .