A Comparison of Procedures for Controlling the False Discovery Rate in the Presence of Small Variance Genes: A Simulation Study
暂无分享,去创建一个
Ziv Shkedy | Dan Lin | Luc Bijnens | Willem Talloen | Tomasz Burzykowski | Z. Shkedy | W. Talloen | L. Bijnens | T. Burzykowski | Dan Lin
[1] Jean-Jacques Daudin,et al. Mixture model on the variance for the differential analysis of gene expression data , 2005 .
[2] Robert Tibshirani,et al. SAM “Significance Analysis of Microarrays” Users guide and technical document , 2002 .
[3] P. Broberg. Statistical methods for ranking differentially expressed genes , 2003, Genome Biology.
[4] Mark S. Gilthorpe,et al. A full Bayesian hierarchical mixture model for the variance of gene differential expression , 2007, BMC Bioinformatics.
[5] John D. Storey,et al. Empirical Bayes Analysis of a Microarray Experiment , 2001 .
[6] John D. Storey. A direct approach to false discovery rates , 2002 .
[7] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[8] R. Tibshirani,et al. Empirical bayes methods and false discovery rates for microarrays , 2002, Genetic epidemiology.
[9] Scott L. Zeger,et al. The Analysis of Gene Expression Data: An Overview of Methods and Software , 2003 .
[10] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[11] Hinrich W. H. Göhlmann,et al. An Investigation on Performance of Significance Analysis of Microarray (SAM) for the Comparisons of Several Treatments with one Control in the Presence of Small‐variance Genes , 2008, Biometrical journal. Biometrische Zeitschrift.
[12] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[13] R. Tibshirani,et al. Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[14] G. Parmigiani,et al. The Analysis of Gene Expression Data , 2003 .
[15] Terence P. Speed,et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..
[16] Thomas D. Wu,et al. Analysing gene expression data from DNA microarrays to identify candidate genes , 2001, The Journal of pathology.
[17] M. Niranjan,et al. Ranking the Eeect of Diierent Features on the Classiication of Discrete Valued Data , 2007 .