Metal-metal and metal-ligand bonding at a QTAIM catastrophe: a combined experimental and theoretical charge density study on the alkylidyne cluster Fe3(μ-H)(μ-COMe)(CO)10.

The charge density in the tri-iron methoxymethylidyne cluster Fe(3)(μ-H)(μ-COMe)(CO)(10) (1) has been studied experimentally at 100 K and by DFT calculations on the isolated molecule using the Quantum Theory of Atoms in Molecules (QTAIM). The COMe ligand acts as a nearly symmetric bridge toward two of the Fe atoms (Fe-C = 1.8554(4), 1.8608(4) Å) but with a much longer interaction to the third Fe atom, Fe-C = 2.6762(4) Å. Complex 1 provides a classic example where topological QTAIM catastrophes render an exact structure description ambiguous. While all experimental and theoretical studies agree in finding no direct metal-metal interaction for the doubly bridged Fe-Fe vector, the chemical bonding between the Fe(CO)(4) unit and the Fe(2)(μ-H)(μ-COMe)(CO)(6) moiety in terms of conventional QTAIM descriptors is much less clear. Bond paths implying direct Fe-Fe interactions and a weak interaction between the COMe ligand and the Fe(CO)(4) center are observed, depending on the experimental or theoretical density model examined. Theoretical studies using the Electron Localizability Indicator (ELI-D) suggest the metal-metal bonding is more significant, while the delocalization indices imply that both Fe-Fe bonding and Fe···C(alkylidyne) bonding are equally important. The source functions at various interfragment reference points are similar and highly delocalized. The potential-energy surface (PES) for the migration of the alkylidyne group from a μ(2) to a semi-μ(3) coordination mode has been explored by DFT calculations on 1 and the model complexes M(3)(μ-H)(μ-CH)(CO)(10) (M = Fe, 2; Ru, 3; and Os, 4). These calculations confirm a semi-μ(3) bridging mode for the alkylidyne ligand as the minimum-energy geometry for compounds 2-4 and demonstrate that, for 1, both Fe-Fe and Fe···C(alkylidyne) interactions are important in the cluster bonding. The PES between μ(2) and semi-μ(3) alkylidyne coordination for 1 is extremely soft, and the interconversion between several topological isomers is predicted to occur with almost no energy cost. Analysis of the density ρ(r) and the Laplacian of the density ▽(2)ρ(r(b)) in the methoxymethylidyne ligand is consistent with a partial π-bond character of the C-O bond, associated with an sp(2) hybridization for these atoms.

[1]  A. Weller,et al.  [Rh(C7H8)(PPh3)Cl]: an experimental charge-density study. , 2008, Acta crystallographica. Section B, Structural science.

[2]  P. MacDougall,et al.  Nature of metal-metal interactions in systems with bridging ligands. 1. Electronic structure and bonding in octacarbonyldicobalt , 1991 .

[3]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[4]  R. Bader,et al.  A Bond Path: A Universal Indicator of Bonded Interactions , 1998 .

[5]  D. Shriver,et al.  Alkylation and structural rearrangement of the bridging carbonyl ligand in .mu.-carbonyl-decacarbonyl-.mu.-hydrido-triferrate(2Fe-Fe)(1-). Synthesis of .mu.-(O-methylcarbonyl)-decacarbonyl-.mu.-hydrido-triferrate(2Fe-Fe) , 1975 .

[6]  Davide M. Proserpio,et al.  Experimental Electron Density in a Transition Metal Dimer: Metal−Metal and Metal−Ligand Bonds , 1998 .

[7]  R. Bau,et al.  Crystallographic studies of transition metal hydride complexes , 1981 .

[8]  Thomas Heine,et al.  Description of electron delocalization via the analysis of molecular fields. , 2005, Chemical reviews.

[9]  C. Mealli,et al.  IS THERE A DIRECT FE-FE BOND IN FE2(CO)9 ? , 1994 .

[10]  F. L. Hirshfeld Can X‐ray data distinguish bonding effects from vibrational smearing? , 1976 .

[11]  M. Churchill,et al.  Structural studies on polynuclear osmium carbonyl hydrides. 30. Synthesis, crystal structure, and reactivity of (.mu.-H)Os3(CO)10(.mu.3-CPh) , 1985 .

[12]  J. Holmgren,et al.  Synthesis characterization, and reactivity of HRu3(CO)10(CH) and H2Ru3(CO)9(CCO) , 1984 .

[13]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[14]  F. Herbstein Organometallic structures. IV. 1,1,1,1,2,2,2,3,3,3-decacarbony1-2,3-μ-dimethyliminiocarbene-2,3-μ-hydrido-triangulo-triiron , 1981 .

[15]  Á. M. Pendás,et al.  Bond paths as privileged exchange channels. , 2007, Chemistry.

[16]  S. Peng,et al.  One-Step Synthesis of [HM3(CO)11]- from M3(CO)12 (M = Fe, Ru, Os) via Unusual Hydride Transfer from 1,3,5-Trimethyl-1,3,5-triazacyclohexane , 2003 .

[17]  R. Bader,et al.  A Green's function for the density , 1998 .

[18]  C. Gatti,et al.  The local form of the source function as a fingerprint of strong and weak intra- and intermolecular interactions. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[19]  R. Bader,et al.  The mechanics of hydrogen bond formation in conjugated systems , 1988 .

[20]  K. Woźniak,et al.  Towards the best model for H atoms in experimental charge-density refinement. , 2009, Acta crystallographica. Section A, Foundations of crystallography.

[21]  Y. Grin,et al.  Electron localizability indicator for correlated wavefunctions. III: singlet and triplet pairs , 2008 .

[22]  David Feller The role of databases in support of computational chemistry calculations , 1996 .

[23]  H. Wasserman,et al.  Synthesis of cyclohexadiene complexes of (methylidyne)triruthenium clusters. The crystal structure of (.mu.-H)Ru3(.mu.3-COMe)(CO)8(1,3-C6H8) and a redetermination of the structure of (.mu.-H)Ru3(.mu.-COMe)(CO)10 , 1983 .

[24]  H. Freund,et al.  Calculation of transition metal compounds using an extension of the CNDO-formalism , 1980 .

[25]  E. Baerends,et al.  Electronic structure of binuclear metal carbonyl complexes , 1980 .

[26]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[27]  E. M. Holt,et al.  Synthesis, x-ray crystal structure, and chemistry of a metal cluster ketenylidene, [Fe3(CO)9(CCO)]2-, with carbide-like reactivity , 1983 .

[28]  D. Stalke,et al.  Electron-density investigation of metal-metal bonding in the dinuclear "borylene" complex [{Cp(CO)2Mn}2(mu-BtBu)]. , 2008, Angewandte Chemie.

[29]  P. Coppens,et al.  Experimental charge density study of dicobalt octacarbonyl and comparison with theory , 1983 .

[30]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[31]  János G. Ángyán,et al.  Comparison of ab Initio Hartree−Fock and Kohn−Sham Orbitals in the Calculation of Atomic Charge, Bond Index, and Valence , 2000 .

[32]  F. Rotella,et al.  Crystal structure and molecular geometry of HRu3(CO)10(C = NMe2), including the direct location of the .mu.2-bridging hydride ligand , 1976 .

[33]  S. C. Rogers,et al.  QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis , 2003 .

[34]  M. Solà,et al.  The role of electronic delocalization in transition metal complexes from the electron localization function and the quantum theory of atoms in molecules viewpoints , 2009 .

[35]  C. Bauschlicher On the bonding in Fe2(CO)9 , 1986 .

[36]  A. Sironi,et al.  Electron density of semi-bridging carbonyls. Metamorphosis of CO ligands observed via experimental and theoretical investigations on [FeCo(CO)(8)](-). , 2002, Journal of the American Chemical Society.

[37]  R. Bader,et al.  Properties of Atoms in Molecules:  Caged Atoms and the Ehrenfest Force. , 2005, Journal of chemical theory and computation.

[38]  D. Yarkony,et al.  Towards a highly efficient theoretical treatment of Jahn-Teller effects in molecular spectra: the 1 2A and 2 2A electronic states of the ethoxy radical. , 2006, The Journal of chemical physics.

[39]  L. Farrugia,et al.  Experimental charge density in the transition metal complex Mn(2)(CO)(10): a comparative study. , 2003, Acta crystallographica. Section B, Structural science.

[40]  L. Farrugia Molecular structure and fluxional behaviour of the iron-rhodium methoxymethylidyne cluster complex Fe2 Rh(μ-H)(μ3-COCH3)(CO)7(η-C5H5) , 1986 .

[41]  Miroslav Kohout,et al.  A Measure of Electron Localizability , 2004 .

[42]  Robert Ponec,et al.  Chemical structures from the analysis of domain‐averaged fermi holes. Nature of the MnMn bond in bis(pentacarbonylmanganese) , 2005, J. Comput. Chem..

[43]  J. Gladysz,et al.  Methods for attaching metal-capped sp carbon chains to metalclusters: synthesis, structure and reactivity of rhenium–triosmiumcarbon complexes[(η5-C5Me5)Re(NO)(PPh3)(CC)nOs3(CO)10H] , 1997 .

[44]  L. Farrugia,et al.  The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: a combined experimental and theoretical study of (eta(5)-C5H5)Mn(CO)3, (eta(6)-C6H6)Cr(CO)3, and (E)-{(eta(5)-C5H4)CF=CF(eta(5)-C5H4)}(eta(5)-C5H5)2Fe2. , 2009, Journal of the American Chemical Society.

[45]  L. Brammer,et al.  Experimental Charge Density and Neutron Structural Study of cis-HMn(CO)4PPh3: Comprehensive Analysis of Chemical Bonding and Evidence for a C−H···H−Mn Hydrogen Bond , 1998 .

[46]  R. Ponec,et al.  Do the structural changes defined by the electron density topology necessarily affect the picture of the bonding? , 2009, Inorganic chemistry.

[47]  A. Mitschler,et al.  Bonding in a binuclear metal carbonyl: experimental charge density in Mn2(CO)10 , 1982 .

[48]  J. Poblet,et al.  Laplacian of charge density for binuclear complexes : terminal vs bridging carbonyls , 1993 .

[49]  Xavier Fradera,et al.  The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory , 2002 .

[50]  R. Goddard,et al.  Übergangsmetallkomplexe: IV. CC-spaltung und-verknupfung in komplexgebundenem cyclooctatetraen, struktur und bestimmung der elektronen-deformationsdichte im μ-octatetraenyl-bis[(π-cyclopentadienyl)chrom] durch tieftemperature-röntgenbeugung (X—X) , 1978 .

[51]  A. Sironi,et al.  The electron density of bridging hydrides observed via experimental and theoretical investigations on [Cr2(mu2-H)(Co)10]-. , 2005, Journal of the American Chemical Society.

[52]  D. L. Cooper,et al.  Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes , 2007 .

[53]  R. Sillanpää,et al.  A combined experimental and theoretical charge density study of the chemical bonding and magnetism in 3-amino-propanolato Cu(II) complexes containing weakly coordinated anions. , 2008, Journal of Physical Chemistry A.

[54]  H. Schaefer,et al.  Molecular Structures and Vibrational Frequencies of Iron Carbonyls: Fe(CO)5, Fe2(CO)9, and Fe3(CO)12 , 1998 .

[55]  A. Madsen SHADE web server for estimation of hydrogen anisotropic displacement parameters , 2006 .

[56]  C. Housecroft,et al.  Ligand behavior of the [HRu3(CO)10(.mu.-CO)]- cluster anion toward a borane: synthesis of and molecular and electronic structure of [HRu3(CO)10(.mu.-COBH2NMe3)] , 1990 .

[57]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[58]  J. Shapley,et al.  Synthesis and reactivity of a semi-triply bridging methylidyne complex. Crystal structure of HOs3(CO)10(CH) , 1983 .

[59]  R. Blessing Outlier Treatment in Data Merging , 1997 .

[60]  A. Sironi,et al.  Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities , 2003 .

[61]  Frank Neese,et al.  All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. , 2008, Journal of chemical theory and computation.

[62]  Henning Osholm Sørensen,et al.  Modeling of the nuclear parameters for H atoms in X-ray charge-density studies. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[63]  D. Marabello,et al.  Experimental electron density in the triclinic phase of Co2(CO)6(μ-CO)(μ-C4O2H2) at 120 K , 2001 .

[64]  J. Perdew,et al.  Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas , 1986, Physical review. B, Condensed matter.

[65]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[66]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[67]  Piero Macchi,et al.  Charge Density in Transition Metal Clusters: Supported vs Unsupported Metal−Metal Interactions , 1999 .

[68]  M. Reiher,et al.  Relativistic Effects on the Topology of the Electron Density. , 2007, Journal of chemical theory and computation.

[69]  R. Wiest,et al.  Electron deformation density for the "supershort" chromium-chromium quadruple bond: a joint experimental and theoretical study , 1982 .

[70]  C. Gatti Chemical bonding in crystals: new directions , 2005 .

[71]  L. Pacios,et al.  Approximate kinetic energy density for intermolecular regions in hydrogen bond dimers , 2001 .

[72]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[73]  M. Kohout Bonding indicators from electron pair density functionals. , 2007, Faraday discussions.

[74]  M. Lehmann,et al.  Electron density in bis(dicarbonyl-.pi.-cyclopentadienyliron) at liquid nitrogen temperature by x-ray and neutron diffraction , 1978 .

[75]  Fernando Cortés-Guzmán,et al.  Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes , 2005 .

[76]  C. Gatti,et al.  Source function description of metal-metal bonding in d-block organometallic compounds. , 2007, Faraday discussions.

[77]  P. Coppens,et al.  Electron distribution in .mu.-acetylene-bis(cyclopentadienylnickel) by low-temperature X-ray diffraction , 1976 .

[78]  D. Rabinovich,et al.  Calculation of absorption corrections for camera and diffractometer data , 1965 .

[79]  P. Macchi,et al.  On the interpretation of the source function. , 2009, The journal of physical chemistry. A.

[80]  Direct space decomposition of ELI-D: interplay of charge density and pair-volume function for different bonding situations. , 2008, The journal of physical chemistry. A.

[81]  R. V. G. Ewens,et al.  64. The crystal structure of iron enneacarbonyl , 1939 .

[82]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[83]  B. Iversen,et al.  Experimental and theoretical electron density study of the peroxo function in oxoperoxo (pyridine-2,6-dicarboxylato) (hexamethylphosphoramide) molybdenum (VI) : implications for olefin epoxidation by peroxo transition metal complexes. , 2001 .

[84]  D. Marabello,et al.  Experimental electron density analysis of Mn2(CO)10: metal-metal and metal-ligand bond characterization. , 2000, Inorganic chemistry.

[85]  Characterisation of agostic interactions by a topological analysis of experimental and theoretical charge densities in [EtTiCl3(dmpe)] [dmpe = 1,2-bis(dimethylphosphino)ethane] , 1998 .

[86]  W. Scherer,et al.  Agostic interactions in d0 metal alkyl complexes. , 2004, Angewandte Chemie.

[87]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[88]  L. Farrugia,et al.  Semibridging interactions and conformational equilibria in methoxymethylidyne cluster complexes. Syntheses, spectroscopic, and x-ray crystallographic studies on CoFe2(.mu.-H)(.mu.3-COCH3)(CO)7(.eta.-C5H5), Fe2Ni(.mu.3-COCH3)(.mu.3-CO)(CO)6(.eta.-C5H5), and AuCoFe2(.mu.3-COCH3)(.mu.3-CO)(CO)6(PPh3)(. , 1986 .

[89]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[90]  Miquel Solà,et al.  Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. , 2005, Chemical reviews.

[91]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[92]  M. Tafipolsky,et al.  Elucidation of the bonding in Mn(eta2-SiH) complexes by charge density analysis and T1 NMR measurements: asymmetric oxidative addition and anomeric effects at silicon. , 2006, Chemical communications.

[93]  Y. Struchkov,et al.  Formation of the triosmium μ-carbyne complex in the reaction of with dimethylphenylphosphine. X-ray structure of HOs3(CO)10{μ-CC(Ph)CC(Ph)Re(CO)4PMe2Ph} , 1986 .

[94]  J. Platts,et al.  Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. , 2008, Journal of the American Chemical Society.

[95]  H. F. King,et al.  On the basis‐set dependence of local and integrated electron density properties: Application of a new computer program for quantum‐chemical density analysis , 2009, J. Comput. Chem..

[96]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[97]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[98]  W. Herrmann,et al.  Molecular structure and experimental electron density of (.mu.-methylene)bis[dicarbonyl(.eta.5-cyclopentadienyl)manganese] at 130 K , 1982 .

[99]  A. Madsen,et al.  Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[100]  J. Howard,et al.  Experimental Determination of the Electron Density Topology in a Non-centrosymmetric Transition Metal Complex: [Ni(H3L)][NO3][PF6] [H3L =N,N‘,N‘‘-Tris(2-hydroxy-3-methylbutyl)-1,4,7-triazacyclononane] , 1997 .

[101]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[102]  R. Bader,et al.  Bond paths are not chemical bonds. , 2009, The journal of physical chemistry. A.

[103]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[104]  P. Coppens Charge‐Density Analysis at the Turn of the Century , 1998 .

[105]  Y. Grin,et al.  Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. , 2007, Chemistry.

[106]  R. Ahlrichs,et al.  Contracted all-electron Gaussian basis sets for atoms Rb to Xe , 2000 .

[107]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[108]  Kathrin Meindl,et al.  Foundations of residual-density analysis. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[109]  L. Farrugia,et al.  Metal–metal bonding in bridged ligand systems: experimental and theoretical charge densities in Co3(μ3-CX)(CO)9 (X = H, Cl) , 2005 .

[110]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[111]  N. Hansen,et al.  The phase problem in the analysis of X-ray diffraction data in terms of electron-density distributions , 1996 .

[112]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[113]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[114]  D. Marabello,et al.  About the topological classification of the metal–metal bond , 2004 .

[115]  Robert Ponec,et al.  Structure and bonding in binuclear metal carbonyls from the analysis of domain averaged Fermi holes. I. Fe2(CO)9 and Co2(CO)8 , 2008, J. Comput. Chem..

[116]  M. Beno,et al.  Closed three-center carbon-hydrogen-metal interaction. A neutron diffraction study of HFe/sub 4/(eta/sup 2/-CH)(CO)/sub 12/ , 1981 .

[117]  B. Iversen,et al.  The charge density distribution in a model compound of the catalytic triad in serine proteases. , 2001, Chemistry.

[118]  Cameron Evans,et al.  Chemical bonds without "chemical bonding"? A combined experimental and theoretical charge density study on an iron trimethylenemethane complex. , 2006, The journal of physical chemistry. A.

[119]  Walter Thiel,et al.  DL-FIND: an open-source geometry optimizer for atomistic simulations. , 2009, The journal of physical chemistry. A.

[120]  Y. Abramov On the Possibility of Kinetic Energy Density Evaluation from the Experimental Electron-Density Distribution , 1997 .

[121]  Experimental and theoretical charge-density study of a tetranuclear cobalt carbonyl complex. , 2009, Acta crystallographica. Section B, Structural science.

[122]  M. Spackman,et al.  Anisotropic displacement parameters for H atoms using an ONIOM approach. , 2006, Acta crystallographica. Section B, Structural science.

[123]  Peter Turner,et al.  Reassessment of large dipole moment enhancements in crystals: a detailed experimental and theoretical charge density analysis of 2-methyl-4-nitroaniline. , 2006, The journal of physical chemistry. A.

[124]  A. Orpen,et al.  HRu3(CO)10(COCH3). A cluster with an oxygen-containing μ2-carbyne ligand; preparation, structure and fluxionality , 1979 .

[125]  Calculation of atomic integration data , 2000 .

[126]  P. Roesky,et al.  On the nature of agostic interactions in transition-metal amido complexes. , 2010, Angewandte Chemie.

[127]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[128]  L. Farrugia Is there a Co–Co bond path in Co2(CO)6(μ-CO)(μ-C4H2O2)? , 2005 .

[129]  Xavier Fradera,et al.  The Lewis Model and Beyond , 1999 .

[130]  C. Mealli,et al.  Integration of electron density and molecular orbital techniques to reveal questionable bonds: the test case of the direct Fe-Fe bond in Fe2(CO)9. , 2007, Inorganic chemistry.

[131]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[132]  C. Mealli,et al.  Molecular Structures of M(2)(CO)(9) and M(3)(CO)(12) (M = Fe, Ru, Os): New Theoretical Insights. , 1999, Inorganic chemistry.

[133]  P. G. Byrom,et al.  Retrieval of Structure‐Factor Phases in Non‐centrosymmetric Space Groups. Model Studies Using Multipole Refinements , 1997 .

[134]  H. Freund,et al.  Calculation of transition metal compounds using an extension of the CNDO formalism , 1979 .

[135]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[136]  K. Trueblood,et al.  Correlation of Internal Torsional Motion with Overall Molecular Motion in Crystals , 1998 .

[137]  A. Savin,et al.  Contribution to the electron distribution analysis. I. Shell structure of atoms , 1991 .

[138]  E. Stevens,et al.  Experimental and theoretical electron density analysis of metal-metal bonding in dichromium tetraacetate , 1980 .

[139]  Luca Bertini,et al.  Chemical information from the source function , 2003, J. Comput. Chem..

[140]  A. Weller,et al.  Bond catastrophes in rhodium complexes: experimental charge-density studies of [Rh(C7H8)(P(t)Bu3)Cl] and [Rh(C7H8)(PCy3)Cl]. , 2010, Acta crystallographica. Section B, Structural science.

[141]  P. Coppens,et al.  Nonlinear Least‐Squares Fitting of Numerical Relativistic Atomic Wave Functions by a Linear Combination of Slater‐Type Functions for Atoms with Z = 1–36 , 1998 .

[142]  E. Baerends,et al.  METAL-METAL BONDING IN FE2(CO)9 AND THE DOUBLE BONDS FE(CO)4 = FE2(CO)8 AND (MU -JCO) = FE2(CO)8 IN FE3(CO)12 AND FE2(CO)9. SIMILARITIES AND DIFFERENC ES IN THE INORGANIC/INORGANIC ISOLOBAL ANALOGUES X=Y (X, Y ARE CH2, FE(CO)4 , FE2(CO)8, C2H4, CO) , 1991 .

[143]  Annik Vivier Bunge,et al.  Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2-54 , 1993 .