Low-complexity lossless compression of hyperspectral imagery via adaptive filtering

A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.

[1]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[2]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[3]  R. Unbehauen,et al.  Two-dimensional LMS adaptive filter incorporating a local-mean estimator for image processing , 1993 .

[4]  David W. Thomas,et al.  The two-dimensional adaptive LMS (TDLMS) algorithm , 1988 .

[5]  Luciano Alparone,et al.  Near-lossless compression of 3-D optical data , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[7]  Aaron Kiely,et al.  ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images , 2005 .

[8]  Nasir D. Memon,et al.  Context-based lossless interband compression-extending CALIC , 2000, IEEE Trans. Image Process..

[9]  Lenan Wu,et al.  Enhanced DPCM using LMS predictor and composite source model , 1997 .

[10]  Françoise Beaufays,et al.  Transform-domain adaptive filters: an analytical approach , 1995, IEEE Trans. Signal Process..

[11]  A. Peterson,et al.  Transform domain LMS algorithm , 1983 .

[12]  Nazeeh Aranki,et al.  Spectral Ringing Artifacts in Hyperspectral Image Data Compression , 2006, Hyperspectral Data Compression.

[13]  B D Clymer,et al.  Adaptive filtering for high resolution magnetic resonance images , 1996, Journal of magnetic resonance imaging : JMRI.

[14]  Allen Gersho,et al.  Adaptive filtering with binary reinforcement , 1984, IEEE Trans. Inf. Theory.

[15]  Mohiy M. Hadhoud,et al.  The effect of the image local mean on the two-dimensional least mean square algorithm weight convergence , 1989 .

[16]  Neri Merhav,et al.  Optimal prefix codes for sources with two-sided geometric distributions , 2000, IEEE Trans. Inf. Theory.

[17]  S. T. Alexander,et al.  Image compression results using the LMS adaptive algorithm , 1985, IEEE Trans. Acoust. Speech Signal Process..

[18]  A. Venkatachalam,et al.  Hyperspectral image restoration and coding , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[19]  Giovanni Motta,et al.  Low-complexity lossless compression of hyperspectral imagery via linear prediction , 2005, IEEE Signal Processing Letters.

[20]  Nasir D. Memon,et al.  Context-based, adaptive, lossless image coding , 1997, IEEE Trans. Commun..

[21]  Jarno Mielikäinen,et al.  Lossless Hyperspectral Image Compression via Linear Prediction , 2006, Hyperspectral Data Compression.

[22]  Arto Kaarna,et al.  Lossless hyperspectral image compression via linear prediction , 2002, SPIE Defense + Commercial Sensing.

[23]  David C. van Voorhis,et al.  Optimal source codes for geometrically distributed integer alphabets (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[24]  S. Golomb Run-length encodings. , 1966 .