Algebraic Reconstruction Techniques for Tomographic Particle Image Velocimetry

Tomographic particle image velocimetry (Tomo-PIV) is a technique for three-component three-dimensional (3C-3D) velocity measurement based on the tomographic reconstruction of a volume intensity field from multiple two-dimensional projection. As such the performance and accuracy of this technique is highly dependant on the algorithm used for reconstruction. This paper presents an evaluation of four different tomographic reconstruction algorithms, namely multiplicative algebraic reconstruction techinique (MART); adaptive algebraic reconstruction technique (AART); improved iterative algorithm for sparse object reconstruction (IIASOR); and simultaneous iterative reconstruction technique (SIRT). Results indicate that the MART and AART algorithms provide considerably better particle field reconstructions for fewer iterations.