Model Theory and Proof Theory of Coalgebraic Predicate Logic

We propose a generalization of first-order logic originating in a neglected work by C.C. Chang: a natural and generic correspondence language for any types of structures which can be recast as Set-coalgebras. We discuss axiomatization and completeness results for several natural classes of such logics. Moreover, we show that an entirely general completeness result is not possible. We study the expressive power of our language, both in comparison with coalgebraic hybrid logics and with existing first-order proposals for special classes of Set-coalgebras (apart from relational structures, also neighbourhood frames and topological spaces). Basic model-theoretic constructions and results, in particular ultraproducts, obtain for the two classes that allow completeness---and in some cases beyond that. Finally, we discuss a basic sequent system, for which we establish a syntactic cut-elimination result.

[1]  Sam Staton,et al.  Relating Coalgebraic Notions of Bisimulation , 2009, CALCO.

[2]  Franz Baader,et al.  Unification in modal and description logics , 2011, Log. J. IGPL.

[3]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[4]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[5]  Ian M. Hodkinson,et al.  Hybrid Formulas and Elementarily Generated Modal Logics , 2006, Notre Dame J. Formal Log..

[6]  Alexander Kurz,et al.  Algebraic Semantics for Coalgebraic Logics , 2004, CMCS.

[7]  Dirk Pattinson,et al.  Cut elimination in coalgebraic logics , 2010, Inf. Comput..

[8]  Lutz Schröder A Finite Model Construction for Coalgebraic Modal Logic , 2006, FoSSaCS.

[9]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[10]  Balder ten Cate,et al.  Hybrid logics , 2007, Handbook of Modal Logic.

[11]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[12]  Albert Visser,et al.  Finality regained: A coalgebraic study of Scott-sets and multisets , 1999, Arch. Math. Log..

[13]  Dirk Pattinson,et al.  Modular Algorithms for Heterogeneous Modal Logics , 2007, ICALP.

[14]  B. T. Cate,et al.  Model theory for extended modal languages , 2005 .

[15]  James W. Garson,et al.  Quantification in Modal Logic , 1984 .

[16]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[17]  Marc Pauly,et al.  A Modal Logic for Coalitional Power in Games , 2002, J. Log. Comput..

[18]  Johann A. Makowsky,et al.  Completeness Theorems For Modal Model Theory With the Montague-Chang Semantics I , 1977, Math. Log. Q..

[19]  Silvio Ghilardi,et al.  Unification Through Projectivity , 1997, J. Log. Comput..

[20]  Balder ten Cate,et al.  On the Complexity of Hybrid Logics with Binders , 2005, CSL.

[21]  Helle Hvid Hansen,et al.  Neighbourhood Structures: Bisimilarity and Basic Model Theory , 2009, Log. Methods Comput. Sci..

[22]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[23]  Dmitry Sustretov,et al.  Modal languages for topology: Expressivity and definability , 2006, Ann. Pure Appl. Log..

[24]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[25]  A. R. D. Mathias,et al.  Cambridge Summer School in Mathematical Logic , 1973 .

[26]  Tadeusz Litak,et al.  A Van Benthem/Rosen theorem for coalgebraic predicate logic , 2015, J. Log. Comput..

[27]  Eric Rosen,et al.  Modal Logic over Finite Structures , 1997, J. Log. Lang. Inf..

[28]  Pan Hui,et al.  BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks , 2008, IEEE Transactions on Mobile Computing.

[29]  Katsuhiko Sano,et al.  Coalgebraic Predicate Logic: Equipollence Results and Proof Theory , 2011, TbiLLC.

[30]  Alexander Kurz,et al.  Ultrafilter Extensions for Coalgebras , 2005, CALCO.

[31]  Benjamin Rossman,et al.  Homomorphism preservation theorems , 2008, JACM.

[32]  Dirk Pattinson,et al.  On Modal Logics of Linear Inequalities , 2010, Advances in Modal Logic.

[33]  Dirk Pattinson,et al.  Rank-1 Modal Logics are Coalgebraic , 2007, J. Log. Comput..

[34]  Katsuhiko Sano,et al.  Coalgebraic Predicate Logic , 2012, ICALP.

[35]  Bart Jacobs Predicate Logic for Functors and Monads , 2010 .

[36]  Joseph Sgro The interior operator logic and product topologies , 1980 .

[37]  Balder ten Cate,et al.  Pure Extensions, Proof Rules, and Hybrid Axiomatics , 2006, Stud Logica.

[38]  Dirk Pattinson Expressive Logics for Coalgebras via Terminal Sequence Induction , 2004, Notre Dame J. Formal Log..

[39]  Kit Fine,et al.  In so many possible worlds , 1972, Notre Dame J. Formal Log..

[40]  Corina Cîrstea,et al.  Modal Logics are Coalgebraic , 2008, Comput. J..

[41]  Andrei Voronkov,et al.  Equality Reasoning in Sequent-Based Calculi , 2001, Handbook of Automated Reasoning.

[42]  Jerry Seligman Internalization: The Case of Hybrid Logics , 2001, J. Log. Comput..

[43]  Jörg Flum,et al.  Topological Model Theory , 1980 .

[44]  Alexander Kurz,et al.  Strongly Complete Logics for Coalgebras , 2012, Log. Methods Comput. Sci..

[45]  Dirk Pattinson,et al.  Coalgebraic Correspondence Theory , 2010, FoSSaCS.

[46]  Dirk Pattinson,et al.  Named Models in Coalgebraic Hybrid Logic , 2010, STACS.

[47]  Stéphane Demri,et al.  Presburger Modal Logic Is PSPACE-Complete , 2006, IJCAR.

[48]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[49]  Andrzej Wronski Transparent Unification Problem , 1995, Reports Math. Log..

[50]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[51]  Aviad Heifetz,et al.  Probability Logic for Type Spaces , 2001, Games Econ. Behav..

[52]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[53]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[54]  Robert Goldblatt,et al.  An abstract setting for Henkin proofs , 1984 .