Ultrahigh contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles

We exploit the unique properties of electromagnetic waves in nanophotonic structures to enhance the capabilities for active control of electromagnetic thermal transfer at nanoscale. We show that the near-field thermal transfer between two nanospheres can exhibit thermal rectification effect with very high contrast, and with large operating bandwidth. In this system, the scale invariance properties of the resonance modes result in a large difference in the coupling constants between relevant modes in the forward and reverse scenarios. Such a difference in coupling constants provides a new mechanism for thermal rectification.

[1]  Pramod Reddy,et al.  Radiative Heat Transfer at the Nanoscale , 2016 .

[2]  Z. M. Zhang,et al.  Thermal Rectification Enabled by Near-Field Radiative Heat Transfer Between Intrinsic Silicon and a Dissimilar Material , 2013 .

[3]  Zhuomin M. Zhang,et al.  FUNDAMENTALS AND APPLICATIONS OF NEAR-FIELD RADIATIVE ENERGY TRANSFER , 2013 .

[4]  Keyong Zhu,et al.  Ultrafast modulation of near-field heat transfer with tunable metamaterials , 2012, 1212.6129.

[5]  Michal Lipson,et al.  Near-field radiative cooling of nanostructures. , 2012, Nano letters.

[6]  S. Fan,et al.  Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates , 2012 .

[7]  J. Chevrier,et al.  Tuning near field radiative heat flux through surface excitations with a metal insulator transition. , 2012, Physical review letters.

[8]  J. Chevrier,et al.  Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics , 2012, 1201.1824.

[9]  John D. Joannopoulos,et al.  Near-field thermal radiation transfer controlled by plasmons in graphene , 2012, 1201.1489.

[10]  J. Chevrier,et al.  Phonon polaritons enhance near-field thermal transfer across the phase transition of VO2 , 2011 .

[11]  Joël Chevrier,et al.  Fast nanoscale heat-flux modulation with phase-change materials , 2011 .

[12]  Philippe Ben-Abdallah,et al.  Modulation of near-field heat transfer between two gratings , 2011, 1105.3745.

[13]  Qingxin Zhang,et al.  An Electrically Tuned Solid‐State Thermal Memory Based on Metal–Insulator Transition of Single‐Crystalline VO2 Nanobeams , 2011 .

[14]  Mathieu Francoeur,et al.  Near-field radiative transfer based thermal rectification using doped silicon , 2011 .

[15]  Shanhui Fan,et al.  Thermal rectification through vacuum. , 2010, Physical review letters.

[16]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[17]  Gang Chen,et al.  Surface phonon polaritons mediated energy transfer between nanoscale gaps. , 2009, Nano letters.

[18]  Jiuning Hu,et al.  Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. , 2009, Nano letters.

[19]  Gang Chen,et al.  Near-field radiative heat transfer between a sphere and a substrate , 2008, 0909.0784.

[20]  Baowen Li,et al.  Thermal memory: a storage of phononic information. , 2008, Physical review letters.

[21]  Lei Wang,et al.  Phononics gets hot , 2008 .

[22]  Gang Chen,et al.  Thermal near-field radiative transfer between two spheres , 2008, 0909.0765.

[23]  Baowen Li,et al.  Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations , 2007, 0707.4241.

[24]  A. Zettl,et al.  Solid-State Thermal Rectifier , 2006, Science.

[25]  G. Casati,et al.  Negative differential thermal resistance and thermal transistor , 2004, cond-mat/0410172.

[26]  G. Casati,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[27]  H. Haus Waves and fields in optoelectronics , 1983 .

[28]  M. Cardona,et al.  Temperature dependence of the optical phonons and transverse effective charge in 3 C -SiC , 1982 .

[29]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[30]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[31]  Hermann A. Haus,et al.  Coupled-mode theory of optical waveguides , 1987 .

[32]  D. A. Kleinman,et al.  Infrared Properties of Cubic Silicon Carbide Films , 1959 .