The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy

[1]  R. Hajjar,et al.  SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway , 2012, European heart journal.

[2]  F. le Noble,et al.  Extrinsic Notch Ligand Delta-Like 1 Regulates Tip Cell Selection and Vascular Branching Morphogenesis , 2012, Circulation research.

[3]  J. Bauersachs,et al.  Biogenesis and Regulation of Cardiovascular MicroRNAs , 2011, Circulation Research.

[4]  M. Seishima,et al.  The role of autophagy emerging in postinfarction cardiac remodelling. , 2011, Cardiovascular research.

[5]  R. Gottlieb,et al.  Mitochondrial turnover in the heart. , 2011, Biochimica et biophysica acta.

[6]  Dian J. Cao,et al.  Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy , 2011, Proceedings of the National Academy of Sciences.

[7]  B. Groner,et al.  MicroRNA-dependent regulation of the microenvironment and the epithelial stromal cell interactions in the mouse mammary gland , 2011, Cell Cycle.

[8]  Thomas Thum,et al.  miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development , 2010, Nature Genetics.

[9]  G. Condorelli,et al.  MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling , 2010, Nature Cell Biology.

[10]  I. Komuro,et al.  Inhibition of autophagy in the heart induces age-related cardiomyopathy , 2010, Autophagy.

[11]  B. Rothermel,et al.  FoxO, Autophagy, and Cardiac Remodeling , 2010, Journal of cardiovascular translational research.

[12]  Chang Hwa Jung,et al.  mTOR regulation of autophagy , 2010, FEBS letters.

[13]  Cam Patterson,et al.  The FoxO family in cardiac function and dysfunction. , 2010, Annual review of physiology.

[14]  R. Gottlieb,et al.  Autophagy during cardiac stress: joys and frustrations of autophagy. , 2010, Annual review of physiology.

[15]  E. Olson,et al.  A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. , 2009, Developmental cell.

[16]  Jian-Fu Chen,et al.  MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. , 2009, The Journal of clinical investigation.

[17]  Arunima Sengupta,et al.  FoxO Transcription Factors Promote Autophagy in Cardiomyocytes* , 2009, The Journal of Biological Chemistry.

[18]  R. Jaenisch,et al.  Loss of Cardiac microRNA-Mediated Regulation Leads to Dilated Cardiomyopathy and Heart Failure , 2009, Circulation research.

[19]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[20]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[21]  E. Olson,et al.  microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. , 2008, Genes & development.

[22]  Y. Pinto,et al.  Conditional Dicer Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling , 2008, Circulation.

[23]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[24]  Michael D. Schneider,et al.  Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure , 2008, Proceedings of the National Academy of Sciences.

[25]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[26]  J. Bonventre,et al.  Rapid screening of glomerular slit diaphragm integrity in larval zebrafish. , 2007, American journal of physiology. Renal physiology.

[27]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[28]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[29]  Michael T. McManus,et al.  Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2 , 2007, Cell.

[30]  Thomas Thum,et al.  MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure , 2007, Circulation.

[31]  M. Lohse,et al.  A Role for Caspase-1 in Heart Failure , 2007, Circulation research.

[32]  R. Gottlieb,et al.  Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes* , 2006, Journal of Biological Chemistry.

[33]  D. Castrillon,et al.  Foxo Transcription Factors Blunt Cardiac Hypertrophy by Inhibiting Calcineurin Signaling , 2006, Circulation.

[34]  G. Hannon,et al.  Control of translation and mRNA degradation by miRNAs and siRNAs. , 2006, Genes & development.

[35]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[36]  Da-Zhi Wang,et al.  Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. , 2004, The Journal of clinical investigation.

[37]  Marco Sandri,et al.  Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy , 2004, Cell.

[38]  T. Fujimiya,et al.  Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2 , 2003, Oncogene.

[39]  J. Qin,et al.  Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. , 2000, Molecular cell.

[40]  M. Ullman-Cullere,et al.  Body condition scoring: a rapid and accurate method for assessing health status in mice. , 1999, Laboratory animal science.

[41]  J. Ross,et al.  Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Thum,et al.  A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. , 2012, Journal of molecular and cellular cardiology.

[43]  D. Glass PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. , 2010, Current topics in microbiology and immunology.

[44]  P. Townsend,et al.  What causes a broken heart--molecular insights into heart failure. , 2010, International review of cell and molecular biology.

[45]  Z. Elazar,et al.  Flow cytometric analysis of autophagy in living mammalian cells. , 2009, Methods in enzymology.

[46]  M. Seishima,et al.  Cardiovascular, Pulmonary and Renal Pathology Functional Significance and Morphological Characterization of Starvation-Induced Autophagy in the Adult Heart , 2009 .

[47]  E. Olson,et al.  Cardiac plasticity. , 2008, The New England journal of medicine.

[48]  Rick B. Vega,et al.  The role of modulatory calcineurin-interacting proteins in calcineurin signaling. , 2003, Trends in cardiovascular medicine.