An explicit hybrid-stabilized 9-node Lagrangian shell element

[1]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[2]  L. Morley Skew plates and structures , 1963 .

[3]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[4]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[5]  J. Z. Zhu,et al.  The finite element method , 1977 .

[6]  Ted Belytschko,et al.  Implementation and application of a 9-node Lagrange shell element with spurious mode control , 1985 .

[7]  S. W. Lee,et al.  Study of a nine-node mixed formulation finite element for thin plates and shells , 1985 .

[8]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[9]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[10]  S. W. Lee,et al.  A new efficient approach to the formulation of mixed finite element models for structural analysis , 1986 .

[11]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[12]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[13]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[14]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9‐node Lagrange plane and plate elements , 1987 .

[15]  Ted Belytschko,et al.  Mixed variational principles and stabilization of spurious modes in the 9-node element , 1987 .

[16]  J. J. Rhiu,et al.  A new efficient mixed formulation for thin shell finite element models , 1987 .

[17]  Y. K. Cheung,et al.  A new approach for the hybrid element method , 1987 .

[18]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[19]  Atef F. Saleeb,et al.  On the mixed formulation of a 9-node Lagrange shell element , 1989 .

[20]  J. Rhiu,et al.  Two higher-order shell finite elements with stabilization matrix , 1990 .

[21]  C. L. Chow,et al.  A mixed formulation of a four-node mindlin shell/plate with interpolated covariant transverse shear strains , 1991 .

[22]  IMPROVEMENT OF THREE‐DIMENSIONAL HYBRID HEXAHEDRAL ELEMENTS BY USING ORTHOGONAL APPROACH , 1991 .

[23]  C. L. Chow,et al.  Efficient hybrid/mixed elements using admissible matrix formulation , 1992 .

[24]  K. Y. Sze,et al.  Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation , 1992 .

[25]  Amin Ghali,et al.  A TWO‐FIELD SOLID ELEMENT SUITING THIN‐MESH ANALYSIS BY ADMISSIBLE MATRIX FORMULATION , 1992 .

[26]  C. L. Chow,et al.  On invariance of isoparametric hybrid/mixed elements , 1992 .

[27]  Amin Ghali,et al.  Hybrid hexahedral element for solids, plates, shells and beams by selective scaling , 1993 .

[28]  K. Y. Sze,et al.  A novel approach for devising higher‐order hybrid elements , 1993 .