An algebraic axiomatization of the Ewald’s intuitionistic tense logic
暂无分享,去创建一个
[1] Carmen Chirita. Polyadic tense $$\theta$$-valued $$\L$$ukasiewicz–Moisil algebras , 2012, Soft Comput..
[2] Ewa Orlowska,et al. Discrete Dualities for Heyting Algebras with Operators , 2007, Fundam. Informaticae.
[3] Chris Cornelis,et al. Rough Sets and Intelligent Systems Paradigms , 2014, Lecture Notes in Computer Science.
[5] Aldo V. Figallo,et al. Note on tense SHn-algebras , 2011 .
[6] Algebraic logic , 1985, Problem books in mathematics.
[7] Ivan Chajda,et al. Dynamic effect algebras , 2012 .
[8] Aldo V. Figallo,et al. Tense operators on De Morgan algebras , 2014, Log. J. IGPL.
[9] A. Monteiro. Sur les algèbres de Heyting symétriques , 1980 .
[10] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[11] Carmen Chiriţă. Tense θ-valued Moisil propositional logic , 2010, Int. J. Comput. Commun. Control.
[12] Jan Paseka,et al. Dynamic effect algebras and their representations , 2012, Soft Comput..
[13] John P. Burgess,et al. Basic Tense Logic , 1984 .
[14] Aldo V. Figallo,et al. Remarks on Heyting algebras with tense operators , 2012 .
[15] Ivan Chajda,et al. Tense Operators on Basic Algebras , 2011 .
[16] R. Sikorski,et al. The mathematics of metamathematics , 1963 .
[17] Aldo V. Figallo,et al. DISCRETE DUALITY FOR TSH-ALGEBRAS , 2012 .
[18] Carmen Chirita. Tense -0-Valued Lukasiewicz-Moisil Algebras , 2011, J. Multiple Valued Log. Soft Comput..
[19] Paul R. Halmos,et al. Algebraic logic, I. Monadic boolean algebras , 1956 .
[20] Ivan Chajda,et al. Algebraic axiomatization of tense intuitionistic logic , 2011 .
[21] W. B. Ewald,et al. Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.
[22] Tomasz Kowalski,et al. Varieties of Tense Algebras , 1998, Reports Math. Log..
[23] George Georgescu,et al. Tense Operators on MV-Algebras and Lukasiewicz-Moisil Algebras , 2007, Fundam. Informaticae.
[24] Ewa Orlowska,et al. Discrete Duality and Its Applications to Reasoning with Incomplete Information , 2007, RSEISP.