Mechanism of Molecular Oxygen Reduction at the Cathode of a PEM Fuel Cell : Non-Electrochemical Reactions on Catalytic Pt Particles

Various catalytic reactions in proton exchange membrane (PEM) fuel cells are discussed, and the effects of different steps, parallel pathways, and side reactions are analyzed for the oxygen reduction reaction (ORR) mechanism. A suitable mechanism table is formulated for the prominent pathway of ORR. The kinetics of the proposed nonelectrochemical reactions on platinum surfaces are then studied using the B3LYP density functional theory (DFT) with the Wadt and Hay relativistic ECPs and basis sets augmented with a 4f function on Pt. The reactions considered are O2(ads) ↔ O(ads) + O(ads) (1), O2H(ads) ↔ O(ads) + OH(ads) (2), H2O(ads) ↔ H(ads) + OH(ads) (3), OH(ads) + OH(ads) ↔ O(ads) + H2O(ads) (4), and OH(ads) + O(ads) ↔ O(ads) + OH(ads) (5). Calibration calculations are carried out for reaction 1 on a single Pt atom using the CASSCF/MRCI method with a cc-pVDZ/relativistic ECP basis set for Pt and the aug-cc-pVDZ basis set for O. Comparison with B3LYP DFT calculations shows that the latter method overestimat...

[1]  Ernest Yeager,et al.  Electrocatalysts for O2 reduction , 1984 .

[2]  A. Arvia,et al.  Temperature dependence of kinetic parameters related to oxygen electroreduction in acid solutions on platinum electrodes , 1994 .

[3]  Jean Lessard,et al.  Surface-oxide growth at platinum electrodes in aqueous H2SO4 ☆: Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements , 2004 .

[4]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[5]  A. Damjanović,et al.  Electrode kinetics of oxygen reduction on oxide-free platinum electrodes☆ , 1967 .

[6]  P Hu,et al.  Catalytic water formation on platinum: a first-principles study. , 2001, Journal of the American Chemical Society.

[7]  Angelos Michaelides,et al.  A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt , 2001 .

[8]  P. Balbuena,et al.  Oxygen reduction on a platinum cluster , 2003 .

[9]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[10]  Hubert A. Gasteiger,et al.  The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions , 2001 .

[11]  M. Itagaki,et al.  Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode , 2005 .

[12]  Baba,et al.  Bonding, structure, and magnetism of physisorbed and chemisorbed O2 on Pt(111). , 1990, Physical review letters.

[13]  Perla B. Balbuena,et al.  Roles of proton and electric field in the electroreduction of O2 on Pt(111) surfaces: Results of an ab-initio molecular dynamics study , 2004 .

[14]  W. Goddard,et al.  Chemisorption of Organics on Platinum. 1. The Interstitial Electron Model , 1998 .

[15]  Jürgen Hafner,et al.  Molecular Precursors in the Dissociative Adsorption of O 2 on Pt(111) , 1997 .

[16]  V. Zhdanov,et al.  Simulation of the charge and potential distribution in the double layer formed by polymer electrolyte , 2006 .

[17]  A. Damjanović,et al.  Kinetics of oxygen evolution and dissolution on platinum electrodes , 1966 .

[18]  J. Hafner,et al.  Reaction channels for the catalytic oxidation of CO on Pt(111) , 1999 .

[19]  Charles R. Martin,et al.  The Platinum Microelectrode/Nafion Interface: An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics , 1992 .

[20]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[21]  Geping Yin,et al.  Durability Study of Pt ∕ C and Pt ∕ CNTs Catalysts under Simulated PEM Fuel Cell Conditions , 2006 .

[22]  C. R. Martin,et al.  Investigations of the O sub 2 reduction reaction at the platinum/Nafion interface using a solid-state electrochemical cell. Technical report , 1991 .

[23]  A. Damjanović,et al.  A confirmation of the O2 reduction mechanism at Pt electrodes from temperature studies , 1984 .

[24]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[25]  E. Yeager,et al.  A Study of Bisulfate Adsorption on PT(111) Single Crystal Electrodes Using In-situ Fourier Transform Infrared Spectroscopy , 1990 .

[26]  H. Gasteiger,et al.  Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution. Rotating ring - Pt(hkl) disk studies , 1995 .

[27]  A. Damjanović,et al.  On the Kinetics and Mechanism of O 2 Reduction at Oxide Film Covered Pt Electrodes I . Effect of Oxide Film Thickness on Kinetics , 1988 .

[28]  J. X. Wang,et al.  Kinetic Analysis of Oxygen Reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects , 2004 .

[29]  P. Balbuena,et al.  Computational Studies of the Interactions of Oxygen with Platinum Clusters , 2001 .

[30]  H. Angerstein-Kozlowska,et al.  The real condition of electrochemically oxidized platinum surfaces , 1973 .

[31]  LEED ANALYSIS OF ELECTRODE SURFACES: STRUCTURAL EFFECTS OF POTENTIODYNAMIC CYCLING ON Pt SINGLE CRYSTALS , 1983 .

[32]  A. Anderson,et al.  Density functional theory study of O2 electroreduction when bonded to a Pt dual site , 2002 .

[33]  James M. Fenton,et al.  Effect of Elevated Temperature and Reduced Relative Humidity on ORR Kinetics for PEM Fuel Cells , 2005 .

[34]  Alfred B. Anderson,et al.  Theoretical Calculation of Activation Energies for Pt + H+(aq) + e-(U) ↔ Pt−H: Activation Energy-Based Symmetry Factors in the Marcus Normal and Inverted Regions , 2003 .

[35]  A. Anderson O2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths , 2002 .

[36]  Hubert A. Gasteiger,et al.  Effect of Relative Humidity on Oxygen Reduction Kinetics in a PEMFC , 2005 .

[37]  A. Anderson Mechanism for the electrooxidation of water to OH and O bonded to platinum: quantum chemical theory , 2002 .

[38]  William A. Goddard,et al.  Chemisorption of Atomic Oxygen on Pt(111) from DFT Studies of Pt-Clusters , 2003 .

[39]  D. Woon Modeling Gas-Grain Chemistry with Quantum Chemical Cluster Calculations. I. Heterogeneous Hydrogenation of CO and H2CO on Icy Grain Mantles , 2002 .

[40]  V. Zhdanov,et al.  Towards the understanding of the specifics of reactions in polymer-electrolyte fuel cells , 2004 .

[41]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[42]  A. Parthasarathy,et al.  Pressure Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode/Nafion Interface: Electrode Kinetics and Mass Transport , 1992 .

[43]  P. Balbuena,et al.  Dissolution of oxygen reduction electrocatalysts in an acidic environment: density functional theory study. , 2006, The journal of physical chemistry. A.

[44]  Steven Holdcroft,et al.  Temperature and pressure dependence of O2 reduction at Pt | Nafion® 117 and Pt | BAM® 407 interfaces , 1999 .

[45]  N. R. Avery An EELS and TDS study of molecular oxygen desorption and decomposition on Pt(111) , 1983 .

[46]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[47]  V. Birss,et al.  Platinum oxide film formation—reduction: an in-situ mass measurement study , 1993 .

[48]  A. Anderson,et al.  Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum , 2005 .

[49]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. I. Optimal structures and vibrational spectra , 1993 .

[50]  Titus V. Albu,et al.  Catalytic effect of platinum on oxygen reduction : An ab initio model including electrode potential dependence , 2000 .

[51]  Philip N. Ross,et al.  Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review , 2001 .

[52]  A. Arvia,et al.  Electroreduction of molecular oxygen on preferentially oriented platinum electrodes in acid solution , 1994 .

[53]  T. Jacob The Mechanism of Forming H2O from H2 and O2 over a Pt Catalyst via Direct Oxygen Reduction , 2006 .

[54]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[55]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[56]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[57]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[58]  Gregory Jerkiewicz,et al.  Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions , 2006 .

[59]  Robert M. Darling,et al.  Mathematical Model of Platinum Movement in PEM Fuel Cells , 2005 .

[60]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[61]  M. Neurock,et al.  Theoretical insights into the structure and reactivity of the aqueous/metal interface , 2005 .

[62]  G. Fisher,et al.  Oxygen interactions with the Pt(111) surface , 1980 .

[63]  G. Fisher,et al.  The interaction of water with the Pt(111) surface , 1980 .

[64]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[65]  Tomoki Akita,et al.  Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. , 2006, Physical chemistry chemical physics : PCCP.

[66]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .