Cancer stem cells in osteosarcoma.

[1]  R. Khokha,et al.  MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1 , 2017, Oncogene.

[2]  F. Verrecchia,et al.  TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression , 2016, Journal of clinical medicine.

[3]  A. Abarrategi,et al.  Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies , 2016, Stem cells international.

[4]  K. Pienta,et al.  The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer , 2016, Oncotarget.

[5]  W. Park,et al.  Deciphering intratumor heterogeneity using cancer genome analysis , 2016, Human Genetics.

[6]  R. Clarke,et al.  Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling , 2016, Oncotarget.

[7]  Anne-Marie Cleton-Jansen,et al.  Osteosarcoma Stem Cells Have Active Wnt/β‐catenin and Overexpress SOX2 and KLF4 , 2016, Journal of cellular physiology.

[8]  A. Cleton-Jansen,et al.  Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling. , 2016, Cancer letters.

[9]  Florian Engert,et al.  Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency , 2015, Nature Communications.

[10]  Junhyong Kim,et al.  The risk of newly diagnosed cancer in patients with rheumatoid arthritis by TNF inhibitor use: a nationwide cohort study , 2015, Genome Biology.

[11]  D. Placantonakis,et al.  Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells , 2015, Nature Communications.

[12]  P. Yuan,et al.  Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression , 2014, Oncogene.

[13]  B. Dawson,et al.  Notch activation as a driver of osteogenic sarcoma. , 2014, Cancer cell.

[14]  C. Swanton,et al.  Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine , 2014, Genome Biology.

[15]  M. Si,et al.  CD271+ Osteosarcoma Cells Display Stem-Like Properties , 2014, PloS one.

[16]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[17]  R. Khokha,et al.  High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures , 2014, Cancer medicine.

[18]  N. Kosaka,et al.  Clinical Relevance and Therapeutic Significance of MicroRNA‐133a Expression Profiles and Functions in Malignant Osteosarcoma‐Initiating Cells , 2014, Stem cells.

[19]  J. Huard,et al.  ALDH Activity Correlates with Metastatic Potential in Primary Sarcomas of Bone. , 2014, Journal of cancer therapy.

[20]  R. Clarke,et al.  Enrichment of human osteosarcoma stem cells based on hTERT transcriptional activity , 2013, Oncotarget.

[21]  C. Basilico,et al.  Perspectives on cancer stem cells in osteosarcoma. , 2013, Cancer letters.

[22]  Hua Wang,et al.  Transforming Growth Factor β1 Signal is Crucial for Dedifferentiation of Cancer Cells to Cancer Stem Cells in Osteosarcoma , 2013, Stem cells.

[23]  Wei Liu,et al.  CD133 expression in osteosarcoma and derivation of CD133⁺ cells. , 2013, Molecular medicine reports.

[24]  F. Papaccio,et al.  Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  H. Johnsen,et al.  Cancer stem cell definitions and terminology: the devil is in the details , 2012, Nature Reviews Cancer.

[26]  Yang Yao,et al.  CD133 expression predicts lung metastasis and poor prognosis in osteosarcoma patients: A clinical and experimental study , 2012, Experimental and therapeutic medicine.

[27]  A. Paiva,et al.  Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line , 2012, BMC Cancer.

[28]  Zhuojing Luo,et al.  Side population cells isolated from human osteosarcoma are enriched with tumor‐initiating cells , 2011, Cancer science.

[29]  D. Heymann,et al.  Bone sarcomas: pathogenesis and new therapeutic approaches , 2011 .

[30]  S. Orkin,et al.  Sox2 maintains self-renewal of tumor initiating cells in osteosarcomas , 2011, Oncogene.

[31]  Jingnan Shen,et al.  Enrichment of osteosarcoma stem cells by chemotherapy , 2011, Chinese journal of cancer.

[32]  F. Papaccio,et al.  Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[34]  Chia-Ying Lin,et al.  Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99‐1 cells based on high aldehyde dehydrogenase activity , 2011, International journal of cancer.

[35]  Toshio Mori,et al.  Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. , 2010, Oncology reports.

[36]  N. Agarwal,et al.  CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. , 2010, Cancer research.

[37]  Steven E. Brooks,et al.  Lung metastasis 21 years after initial diagnosis of osteosarcoma: a case report , 2009, Journal of medical case reports.

[38]  Sean J Morrison,et al.  Mechanisms of stem cell self-renewal. , 2009, Annual review of cell and developmental biology.

[39]  T. Yamashita,et al.  Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas , 2009, British Journal of Cancer.

[40]  Y. Takakura,et al.  Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. , 2009, International journal of oncology.

[41]  H. Okano,et al.  Tumor initiating potential of side population cells in human gastric cancer. , 2009, International journal of oncology.

[42]  C. Cavaliere,et al.  Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours , 2008, PloS one.

[43]  A. Corradin,et al.  The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. , 2008, Cancer research.

[44]  M. Shibuya,et al.  Cisplatin treatment increases survival and expansion of a highly tumorigenic side-population fraction by upregulating VEGF/Flt1 autocrine signaling , 2008, Oncogene.

[45]  Irving L Weissman,et al.  Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. , 2006, Cancer research.

[46]  Edward W Scott,et al.  Stem-like cells in bone sarcomas: implications for tumorigenesis. , 2005, Neoplasia.

[47]  M. de Rosa,et al.  Methods for cancer stem cell detection and isolation. , 2012, Methods in molecular biology.