Analysis of nonlinear systems to estimate intraocular lens position after cataract surgery

[1]  C K Hitzenberger,et al.  Improved prediction of intraocular lens power using partial coherence interferometry , 2001, Journal of cataract and refractive surgery.

[2]  C K Hitzenberger,et al.  Partial coherence interferometry: a novel approach to biometry in cataract surgery. , 1998, American journal of ophthalmology.

[3]  C K Hitzenberger,et al.  High precision biometry of pseudophakic eyes using partial coherence interferometry , 1998, Journal of cataract and refractive surgery.

[4]  G. Clarke,et al.  Comparison of intraocular lens computations using a neural network versus the Holladay formula , 1997, Journal of cataract and refractive surgery.

[5]  C K Hitzenberger,et al.  Submicrometer precision biometry of the anterior segment of the human eye. , 1997, Investigative ophthalmology & visual science.

[6]  M. Zako,et al.  Anterior chamber depth after posterior chamber intraocular lens implantation , 1994, Acta ophthalmologica.

[7]  T. Olsen,et al.  Sources of error in intraocular lens power calculation , 1992, Journal of cataract and refractive surgery.

[8]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[9]  A. Fercher,et al.  Eye-length measurement by interferometry with partially coherent light. , 1988, Optics letters.

[10]  Adolf Friedrich Fercher,et al.  Ophthalmic Laser Interferometry , 1986, Other Conferences.

[11]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[12]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[13]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .