Systematic study of the parameters determining stockholder charges

Abstract The stockholder recipe to calculate atomic charges requires the definition of the so-called promolecule density. This density is defined in terms of the densities of the atoms of the molecule which are determined by their spectroscopic state and the level of theory used. In this study the basis set dependence, the effect of the atomic spectroscopic state and electron correlation upon stockholder charges are investigated.

[1]  Christophe Chipot,et al.  A comprehensive approach to molecular charge density models: From distributed multipoles to fitted atomic charges , 1994 .

[2]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[3]  P. Politzer,et al.  An investigation of definitions of the charge on an atom in a molecule , 1968 .

[4]  R. Bader Atoms in molecules , 1990 .

[5]  F. Sasaki Matrix elements in configuration interaction calculations , 1974 .

[6]  I. Rozas Atomic charges derived from different methods: A comparative study applied to SO2 heterocycles , 1997 .

[7]  P. Gill Extraction of Stewart Atoms from Electron Densities , 1996 .

[8]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[9]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[10]  G. G. Hall Atomic Charges Within Molecules , 1985 .

[11]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[12]  Peter Politzer,et al.  Properties of atoms in molecules. I. Proposed definition of the charge on an atom in a molecule , 1970 .

[13]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[14]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[15]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[16]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[17]  Ulf Ryde,et al.  Comparison of methods for deriving atomic charges from the electrostatic potential and moments , 1998 .

[18]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[19]  F. Weinhold,et al.  Natural population analysis , 1985 .

[20]  Jerzy Cioslowski,et al.  A new population analysis based on atomic polar tensors , 1989 .

[21]  P. Geerlings,et al.  On the performance of density functional methods for describing atomic populations, dipole moments and infrared intensities , 1996 .

[22]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[23]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[24]  C. Alsenoy,et al.  brabo: a program for ab initio studies on large molecular systems , 1993 .