Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains

Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.

[1]  Y. Sinai The Limiting Behavior of a One-Dimensional Random Walk in a Random Medium , 1983 .

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[4]  N. Leonenko,et al.  Spectral Analysis of Fractional Kinetic Equations with Random Data , 2001 .

[5]  J. Faires,et al.  Numerical Methods , 2002 .

[6]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M. Naber DISTRIBUTED ORDER FRACTIONAL SUB-DIFFUSION , 2003, math-ph/0311047.

[8]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[9]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[10]  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[11]  Francesco Mainardi,et al.  Some aspects of fractional diffusion equations of single and distributed order , 2007, Appl. Math. Comput..

[12]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[13]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[14]  Stevan Pilipović,et al.  Existence and calculation of the solution to the time distributed order diffusion equation , 2009 .

[15]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[17]  Yury Luchko,et al.  BOUNDARY VALUE PROBLEMS FOR THE GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATION OF DISTRIBUTED ORDER , 2009 .

[18]  Kai Diethelm,et al.  Numerical analysis for distributed-order differential equations , 2009 .

[19]  Teodor M. Atanackovic,et al.  Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod , 2010, 1005.3379.

[20]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[21]  Mark M. Meerschaert,et al.  Distributed-order fractional diffusions on bounded domains , 2009, 0912.2521.

[22]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[23]  S. C. Lim,et al.  Fractional Langevin equations of distributed order. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[25]  Fawang Liu,et al.  Numerical methods and analysis for a class of fractional advection-dispersion models , 2012, Comput. Math. Appl..

[26]  Yangquan Chen,et al.  Distributed-Order Dynamic Systems - Stability, Simulation, Applications and Perspectives , 2012, Springer Briefs in Electrical and Computer Engineering.

[27]  R J McGough,et al.  THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN. , 2013, Electronic journal of mathematical analysis and applications.

[28]  Mark M Meerschaert,et al.  FRACTIONAL PEARSON DIFFUSIONS. , 2013, Journal of mathematical analysis and applications.

[29]  Blas M Vinagre Jara,et al.  Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.