Multiresolution Surface Reconstruction: Edge Collapsing + Simplification Envelopes

Multiresolution surfaces are especially useful for fast rendering, real-time display, and progressive transmission. This paper reviews major surface simplification techniques and multiresolution surface reconstruction approaches. Based on comparison among various approximation algorithms we propose an appropriate measure for surface approximation accuracy and essential concepts for multiresolution surface reconstruction. Having analyzed the surface simplification process, we propose our solution for multiresolution surface reconstruction combination of the edge collapsing operation and simplification envelopes, which can generate continuous multiresolution surfaces with globally-guaranteed approximation errors. * The University of Auckland, Tamaki Campus, Computing and Information Technology Research, Computer Vision Unit, Auckland, New Zealand Multiresolution Surface Reconstruction: Edge Collapsing + Simplification Envelopes Shao-zheng Zhou and Reinhard Klette Computing and Information Technology Research Computer Science Department, The University of Auckland Tamaki Campus, Auckland, New Zealand Email: {szho001, rklette}@cs.auckland.ac.nz

[1]  Paolo Cignoni,et al.  Representation and visualization of terrain surfaces at variable resolution , 1997, The Visual Computer.

[2]  Charles D. Hansen,et al.  Geometric optimization , 1993, Proceedings Visualization '93.

[3]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[4]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[7]  Reinhard Klette,et al.  Sound Analysis of 3D Objects Based on Digitized Data , 1997 .

[8]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[9]  W. Schroeder A topology modifying progressive decimation algorithm , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[10]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[11]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[12]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[13]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[14]  Jarek Rossignac,et al.  Geometric simplification and compression , 1997 .

[15]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[16]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[17]  Amitabh Varshney,et al.  Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..

[18]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[19]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.