Thermoelastic damping in micro-beam resonators

[1]  J. Butler,et al.  Loss due to transverse thermoelastic currents in microscale resonators , 2004 .

[2]  G. Rogerson,et al.  Thermoelastic coupling effect on a micro-machined beam resonator , 2003 .

[3]  Qing Jiang,et al.  Analysis of the Air-damping Effect on a Micromachined Beam Resonator , 2003 .

[4]  J. Borenstein,et al.  Experimental study of thermoelastic damping in MEMS gyros , 2003 .

[5]  W. Pilkey,et al.  Thermoelasticity Solutions for Straight Beams , 2002 .

[6]  M. Othman,et al.  ELECTROMAGNETO-THERMOELASTIC PLANE WAVES WITH THERMAL RELAXATION IN A MEDIUM OF PERFECT CONDUCTIVITY , 2001 .

[7]  Michael L. Roukes,et al.  Energy dissipation in suspended micromechanical resonators at low temperatures , 2000 .

[8]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[9]  Andrew Cleland,et al.  External control of dissipation in a nanometer-scale radiofrequency mechanical resonator , 1999 .

[10]  Harold G. Craighead,et al.  Measurement of nanomechanical resonant structures in single-crystal silicon , 1998 .

[11]  M. Roukes,et al.  Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals , 1996 .

[12]  J. David Zook,et al.  Optically excited self-resonant microbeams , 1996 .

[13]  N. C. MacDonald,et al.  Dissipation measurements of vacuum-operated single-crystal silicon microresonators , 1995 .

[14]  H. Hosaka,et al.  DAMPING CHARACTERISTICS OF BEAM-SHAPED MICRO-OSCILLATORS , 1995 .

[15]  David W. Burns,et al.  Sealed-cavity resonant microbeam pressure sensor , 1995 .

[16]  D. Greywall,et al.  Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Dan Givoli,et al.  Dynamic thermoelastic coupling effects in a rod , 1995 .

[18]  J. K. Gimzewski,et al.  Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device , 1994, Nature.

[19]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[20]  Parpia,et al.  Low temperature mechanical properties of boron-doped silicon. , 1992, Physical review letters.

[21]  T. Roszhart The effect of thermoelastic internal friction on the Q of micromachined silicon resonators , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[22]  William C. Tang,et al.  Electrostatic-comb drive of lateral polysilicon resonators , 1990 .

[23]  C. Massalas,et al.  COUPLED THERMOELASTIC VIBRATIONS OF A SIMPLY SUPPORTED BEAM , 1983 .

[24]  Dimitri E. Beskos,et al.  Thermally induced vibrations of beam structures , 1980 .

[25]  K. Haller Quantum Electrodynamics , 1979, Nature.

[26]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[27]  B. A. Boley,et al.  Approximate Analyses of Thermally Induced Vibrations of Beams and Plates , 1972 .

[28]  B. S. Berry Precise Investigation of the Theory of Damping by Transverse Thermal Currents , 1955 .

[29]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[30]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[31]  B. Owen,et al.  Thermal Stresses , 1961, Nature.

[32]  C. Zener INTERNAL FRICTION IN SOLIDS II. GENERAL THEORY OF THERMOELASTIC INTERNAL FRICTION , 1938 .

[33]  C. Zener,et al.  Internal Friction in Solids III. Experimental Demonstration of Thermoelastic Internal Friction , 1938 .