The complexity theory companion

Invitation S e c r e t 1 Algorith~r~s are at the heart of comple~ty theory. T h a t is the dark secret of complexity theory. It is recognized by complexity theorists, but would be literally incredible to most others. In this book, we hope to make this secret credible. In fact, t h e real secret is even more dramatic. S e c r e t 2 ~imple algorithms are a~ the heart o/comple.citll theory. A corollary of Secret 2 is that every practitioner of computer science or student of computer science already possesses the ability required to understand, enjoy, and employ complexity theory. We realize that these secrets fly in the face of conventional wisdom. Most people view complexity theory as an arcane realm populated by pointy-hatted (ff not indeed pointy-headed) sorcerers stirring cauldrons of recursion theory with wands of combinatorics, while chanting incantations involving complexity classes whose very names contain hundreds of characters and sear the tongues of mere mortals. This stereotype has sprung up in part due to the small amount of esoteric research t h a t fits this bill, but the stereotype is more strongly attributable to the failuze of complexity theorists to commlmlcate in expository forums the central role t h a t algorithms play in complexity theory. T h r o u g h o u t this book-f~om the tree-pruning and interval-pruning algorithms that shape the first chapter to the query simulation procedures t h a t d o m i u a t e the last chapter-we will see t h a t proofs in complexity theory usually employ algorithms as their central tools. In fact, to more clearly highlight t h e role of algorithmic techniques in complexity theory, thgs book i8 organized by technique rather than by topic. T h a t is, in contrast to the organization of other books on complexity theory, each chapter of this book focuses on one te~hnlque what it is, and what results and applications it has yielded. The most thrilling times in complexity theory are when a new technique is introd~!ced and sweeps like fire over the field. In addition to highlighting the centrality of algorithm~ in t~e proof arsenal of complexity theory, we feel t h a t our technique-based approach more vividly conveys to the reader the flavor and excitement of such conflagrations. We invite t h e …

[1]  Stuart A. Kurtz,et al.  Gap-definable counting classes , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[2]  Lane A. Hemaspaandra,et al.  Semi-membership algorithms: some recent advances , 1994, SIGA.

[3]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[4]  Nikolai K. Vereshchagin,et al.  Banishing Robust Turing Completeness , 1992, LFCS.

[5]  Heribert Vollmer,et al.  A note on closure properties of logspace MOD classes , 2000, Information Processing Letters.

[6]  R. Beigel,et al.  Bounded Queries to SAT and the Boolean Hierarchy , 1991, Theor. Comput. Sci..

[7]  Michael Sipser,et al.  The history and status of the P versus NP question , 1992, STOC '92.

[8]  Jim Kadin,et al.  P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..

[9]  Adi Shamir,et al.  Fully Parallelized Multi-Prover Protocols for NEXP-Time , 1997, J. Comput. Syst. Sci..

[10]  Daniel A. Spielman,et al.  PP is closed under intersection , 1991, STOC '91.

[11]  Viktória Zankó,et al.  #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..

[12]  Sanjay Gupta,et al.  On the Closure of Certain Function Classes Under Integer Division by Polynomially-Bounded Functions , 1992, Inf. Process. Lett..

[13]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[14]  Ker-I Ko,et al.  On Circuit-Size Complexity and the Low Hierarchy in NP , 1985, SIAM J. Comput..

[15]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[16]  Ronitt Rubinfeld,et al.  Self-testing/correcting for polynomials and for approximate functions , 1991, STOC '91.

[17]  Ker-I Ko Relativized polynomial time hierarchies having exactly K levels , 1988, STOC '88.

[18]  Jörg Rothe,et al.  Exact analysis of Dodgson elections: Lewis Carroll's 1876 voting system is complete for parallel access to NP , 1997, JACM.

[19]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[20]  Jacobo Torán,et al.  On counting and approximation , 1989, Acta Informatica.

[21]  Piotr Berman Relationship Between Density and Deterministic Complexity of NP-Complete Languages , 1978, ICALP.

[22]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[23]  Paul Young,et al.  Reductions Among Polynomial Isomorphism Types , 1985, Theor. Comput. Sci..

[24]  Dieter van Melkebeek Reducing P to a Sparse Set using a Constant Number of Queries Collapses P to L , 1996, Computational Complexity Conference.

[25]  Lane A. Hemaspaandra,et al.  Worlds to die for , 1995, SIGA.

[26]  Richard J. Lipton,et al.  New Directions In Testing , 1989, Distributed Computing And Cryptography.

[27]  Lance Fortnow,et al.  PP is Closed Under Truth-Table Reductions , 1996, Inf. Comput..

[28]  Mitsunori Ogihara,et al.  P-selective sets, and reducing search to decision vs. self-reducibility , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[29]  Vikraman Arvind,et al.  Quasi-Linear Truth-Table Reductions to p-Selective Sets , 1996, Theor. Comput. Sci..

[30]  Jin-Yi Cai,et al.  On the Existence of Hard Sparse Sets under Weak Reductions , 1996, STACS.

[31]  Michael Sipser,et al.  On Relativization and the Existence of Complete Sets , 1982, ICALP.

[32]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[33]  Yaacov Yesha,et al.  On Certain Polynomial-Time Truth-Table Reducibilities of Complete Sets to Sparse Sets , 1983, SIAM J. Comput..

[34]  Jie Wang Some Results on Selectivity and Self-Reducibility , 1995, Inf. Process. Lett..

[35]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[36]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[37]  H. Venkateswaran,et al.  Properties that characterize LOGCFL , 1987, J. Comput. Syst. Sci..

[38]  Stuart A. Kurtz,et al.  The isomorphism conjecture fails relative to a random oracle , 1995, JACM.

[39]  Burchard von Braunmühl,et al.  The Alternation Hierarchy for Machines with Sublogarithmic Space is Infinite , 1994, STACS.

[40]  Christopher Homan Low Ambiguity in Strong, Total, Associative, One-Way Functions , 2000, ArXiv.

[41]  Lane A. Hemaspaandra,et al.  On sets with efficient implicit membership tests , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[42]  John E. Hopcroft,et al.  A Note on Cryptography and NP$\cap$ CoNP-P , 1978 .

[43]  John E. Hopcroft,et al.  Recent Directions in Algorithmic Research , 1981, Theoretical Computer Science.

[44]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[45]  A. Selman,et al.  Complexity theory retrospective II , 1998 .

[46]  Ian Parberry,et al.  On the Construction of Parallel Computers from Various Bases of Boolean Functions , 1986, Theor. Comput. Sci..

[47]  Patrick C. Fischer,et al.  Refining Nondeterminism in Relativized Polynomial-Time Bounded Computations , 1980, SIAM J. Comput..

[48]  José L. Balcázar,et al.  Structural Complexity I , 1988, EATCS Monographs on Theoretical Computer Science Series.

[49]  Joan Feigenbaum,et al.  Hiding Instances in Multioracle Queries , 1990, STACS.

[50]  Eric Allender,et al.  Making Nondeterminism Unambiguous , 2000, SIAM J. Comput..

[51]  Lance Fortnow,et al.  Gap-Definability as a Closure Property , 1993, STACS.

[52]  Edith Hemaspaandra,et al.  An Introduction to Query Order , 1997, Bull. EATCS.

[53]  Stathis Zachos,et al.  Probabilistic Quantifiers and Games , 1988, J. Comput. Syst. Sci..

[54]  Ker-I Ko On Self-Reducibility and Weak P-Selectivity , 1983, J. Comput. Syst. Sci..

[55]  Ronald V. Book On Collapsing the Polynomial-Time Hierarchy , 1994, Inf. Process. Lett..

[56]  L. Berman Polynomial reducibilities and complete sets. , 1977 .

[57]  Ronald V. Book,et al.  Comparing Complexity Classes , 1974, J. Comput. Syst. Sci..

[58]  Eric Allender,et al.  Complexity of finite-horizon Markov decision process problems , 2000, JACM.

[59]  Neil Immerman,et al.  On Complete Problems for NP$\cap$CoNP , 1985, ICALP.

[60]  Jörg Rothe,et al.  Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets , 1997, SIAM J. Comput..

[61]  Thomas Thierauf,et al.  The complexity of verifying the characteristic polynomial and testing similarity , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[62]  Michael Ben-Or,et al.  Computing Algebraic Formulas Using a Constant Number of Registers , 1992, SIAM J. Comput..

[63]  Aravind Srinivasan,et al.  Randomness-optimal unique element isolation, with applications to perfect matching and related problems , 1993, SIAM J. Comput..

[64]  Heribert Vollmer,et al.  Nondeterministic NC 1 Computation. , 1996 .

[65]  Paul Young How reductions to sparse sets collapse the polynomial-time hierarchy: a primer; part I: polynomial-time Turing reductions , 1992, SIGA.

[66]  Edith Hemaspaandra,et al.  Bounded Reductions , 1991, Complexity Theory: Current Research.

[67]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[68]  Pierluigi Crescenzi,et al.  A compendium of NP optimization problems , 1994, WWW Spring 1994.

[69]  Avi Wigderson,et al.  Multi-prover interactive proofs: how to remove intractability assumptions , 2019, STOC '88.

[70]  Mark W. Krentel The Complexity of Optimization Problems , 1986, Computational Complexity Conference.

[71]  Zoltán Füredi,et al.  Families of Finite Sets in Which No Set Is Covered by the Union of Two Others , 1982, J. Comb. Theory, Ser. A.

[72]  Timothy J. Long,et al.  Quantitative Relativizations of Complexity Classes , 1984, SIAM J. Comput..

[73]  Harry Buhrman,et al.  On the structure of complete sets , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[74]  Bin Fu,et al.  Circuits over PP and PL , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[75]  Lane A. Hemaspaandra,et al.  Optimal Advice , 1996, Theor. Comput. Sci..

[76]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[77]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[78]  Michael Ben-Or,et al.  A theorem on probabilistic constant depth Computations , 1984, STOC '84.

[79]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[80]  Ronald V. Book,et al.  On Languages Accepted in Polynomial Time , 1972, SIAM J. Comput..

[81]  Jörg Rothe,et al.  If P != NP Then Some Strongly Noninvertible Functions Are Invertible , 2001, FCT.

[82]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[83]  Lane A. Hemaspaandra,et al.  Reducibility Classes of P-Selective Sets , 1996, Theor. Comput. Sci..

[84]  Lane A. Hemaspaandra,et al.  P-Selectivity: Intersections and Indices , 1995, Theor. Comput. Sci..

[85]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[86]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[87]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[88]  Sanjay Gupta,et al.  Closure Properties and Witness Reduction , 1995, J. Comput. Syst. Sci..

[89]  Frank Stephan,et al.  Looking for an Analogue of Rice's Theorem in Circuit Complexity Theory , 1997, Kurt Gödel Colloquium.

[90]  Danilo Bruschi Strong Separations of the Polynomial Hierarchy with Oracles: Constructive Separations by Immune and Simple Sets , 1992, Theor. Comput. Sci..

[91]  Vijay V. Vazirani,et al.  Random polynomial time is equal to slightly-random polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[92]  Howard Straubing,et al.  The power of local self-reductions , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[93]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[94]  Daniel A. Spielman,et al.  The perceptron strikes back , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[95]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[96]  Sanjeev Arora Probabilistic checking of proofs and hardness of approximation problems , 1995 .

[97]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[98]  Lane A. Hemaspaandra,et al.  On the Complexity of Ranking , 1990, J. Comput. Syst. Sci..

[99]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[100]  Stathis Zachos,et al.  Robustness of Probabilistic Computational Complexity Classes under Definitional Perturbations , 1982, Inf. Control..

[101]  Steven Fortune,et al.  A Note on Sparse Complete Sets , 1978, SIAM J. Comput..

[102]  Jörg Rothe,et al.  Creating Strong, Total, Commutative, Associative One-Way Functions from Any One-Way Function in Complexity Theory , 1999, J. Comput. Syst. Sci..

[103]  Juris Hartmanis,et al.  Robust Machines Accept Easy Sets , 1990, Theor. Comput. Sci..

[104]  Allan Borodin,et al.  Bounds for width two branching programs , 1983, SIAM J. Comput..

[105]  Luc Longpré,et al.  On Reductions of NP Sets to Sparse Sets , 1994, J. Comput. Syst. Sci..

[106]  Miklos Santha,et al.  Verifying the determinant in parallel , 1994, computational complexity.

[107]  Lance Fortnow Relativized Worlds with an Infinite Hierarchy , 1999, Inf. Process. Lett..

[108]  Istvan Simon On some subrecursive reducibilities , 1977 .

[109]  Gilles Brassard,et al.  A note on the complexity of cryptography (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[110]  Sanjay Jain,et al.  On the Limitations of Locally Robust Positive Reductions , 1989, FSTTCS.

[111]  Stathis Zachos,et al.  A Decisive Characterization of BPP , 1986, Inf. Control..

[112]  Alan J. Demers,et al.  Some Comments on Functional Self-Reducibility and the NP Hierarchy , 1976 .

[113]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[114]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[115]  Peter van Emde Boas,et al.  Twenty Questions to a P-Selector , 1993, Inf. Process. Lett..

[116]  Christoph Meinel,et al.  Structure and Importance of Logspace-MOD-Classes , 1991, STACS.

[117]  Stathis Zachos,et al.  Probabalistic Quantifiers vs. Distrustful Adversaries , 1987, FSTTCS.

[118]  H. James Hoover,et al.  Limits to Parallel Computation: P-Completeness Theory , 1995 .

[119]  Osamu Watanabe,et al.  On Hardness of One-Way Functions , 1988, Inf. Process. Lett..

[120]  Osamu Watanabe,et al.  On the computational complexity of small descriptions , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[121]  Lane A. Hemaspaandra,et al.  Is #P Closed under Substraction? , 1992, Bull. EATCS.

[122]  Andrew Chi-Chih Yao,et al.  A Circuit-Based Proof of Toda's Theorem , 1993, Inf. Comput..

[123]  Eric Allender Isomorphisms and 1-L Reductions , 1986, Computational Complexity Conference.

[124]  Lane A. Hemaspaandra,et al.  Pseudorandom Generators and the Frequency of Simplicity , 1995, STACS.

[125]  D. Sivakumar,et al.  On Quasilinear-Time Complexity Theory , 1995, Theor. Comput. Sci..

[126]  Christian Glasser,et al.  Consequences of the Existence of Sparse Sets Hard for NP under a Subclass of Truth-Table Reductions , 2000 .

[127]  Richard Beigel,et al.  Circuit lower bounds collapse relativized complexity classes , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[128]  Jürgen Kämper,et al.  Nonuniform Proof Systems: A New Framework to Describe Nonuniform and Probabilistic Complexity Classes , 1991, Theor. Comput. Sci..

[129]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[130]  Lane A. Hemaspaandra,et al.  Reducing the Number of Solutions of NP Functions , 2002, J. Comput. Syst. Sci..

[131]  Edith Hemaspaandra,et al.  Recognizing when Greed can Approximate Maximum Independent Sets is Complete for Parallel Access to NP , 1998, Inf. Process. Lett..

[132]  John E. Hopcroft,et al.  Polynomial-time algorithms for permutation groups , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[133]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[134]  Carsten Lund,et al.  Hardness of approximations , 1996 .

[135]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[136]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[137]  Edith Hemaspaandra,et al.  A modal perspective on the computational complexity of attribute value grammar , 1993, J. Log. Lang. Inf..

[138]  Osamu Watanabe,et al.  How hard are sparse sets? , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[139]  Leonard M. Adleman,et al.  On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[140]  Johannes Köbler,et al.  On the Structure of Low Sets , 1995, SCT.

[141]  Joe Kilian,et al.  Primality testing using elliptic curves , 1999, JACM.

[142]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[143]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[144]  Judy Goldsmith,et al.  Scalability and the Isomorphism Problem , 1996, Inf. Process. Lett..

[145]  Timothy J. Long Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..

[146]  Joel I. Seiferas,et al.  Limitations on Separating Nondeterministic Complexity Classes , 1981, SIAM J. Comput..

[147]  Lane A. Hemaspaandra,et al.  On Sets Polynomially Enumerable by Iteration , 1991, Theor. Comput. Sci..

[148]  Ding-Zhu Du,et al.  On One-Way Functions and Polynomial-Time Isomorphisms , 1986, Theor. Comput. Sci..

[149]  Richard Beigel,et al.  Perceptrons, PP, and the polynomial hierarchy , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[150]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[151]  Alan L. Selman,et al.  Qualitative Relativizations of Complexity Classes , 1985, J. Comput. Syst. Sci..

[152]  A. Church The calculi of lambda-conversion , 1941 .

[153]  P. Beame A switching lemma primer , 1994 .

[154]  Edith Hemaspaandra,et al.  Extending Downward Collapse from 1-versus-2 Queries to j-versus-j+1 Queries , 1999, STACS.

[155]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[156]  Jörg Rothe,et al.  A second step towards complexity-theoretic analogs of Rice's Theorem , 2000, Theor. Comput. Sci..

[157]  David A. Russo Structural properties of complexity classes , 1985, Research in computer science.

[158]  Juris Hartmanis,et al.  On Sparse Oracles Separating Feasible Complexity Classes , 1986, STACS.

[159]  Harry Buhrman,et al.  P-Selektive Self-Reducible Sets: A New Characterization of P , 1996, J. Comput. Syst. Sci..

[160]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[161]  Richard Beigel,et al.  On the relativized power of additional accepting paths , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[162]  Vikraman Arvind,et al.  On pseudorandomness and resource-bounded measure , 2001, Theor. Comput. Sci..

[163]  Richard Beigel,et al.  Relativized Counting Classes: Relations among Thresholds, Parity, and Mods , 1991, J. Comput. Syst. Sci..

[164]  Denis Thérien,et al.  Non-Uniform Automata Over Groups , 1987, Inf. Comput..

[165]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[166]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1986, Theor. Comput. Sci..

[167]  M. Bellare Proof Checking and Approximation: Towards Tight Results , 1996 .

[168]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[169]  Edith Hemaspaandra,et al.  A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..

[170]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[171]  Ronald V. Book,et al.  Tally Languages and Complexity Classes , 1974, Inf. Control..

[172]  Marius Zimand On the Size of Classes with Weak Membership Properties , 1998, Theor. Comput. Sci..

[173]  John D. Rogers The isomorphism conjecture holds and one-way functions exist relative to an oracle , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[174]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[175]  Richard Beigel Closure properties of GapP and #P , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[176]  Jin-Yi Cai,et al.  On the Power of Parity Polynomial Time , 1989, STACS.

[177]  C. Papadimitriou,et al.  Two remarks on the power of counting , 1983 .

[178]  Edith Hemaspaandra,et al.  Downward Collapse from a Weaker Hypothesis , 1998, ArXiv.

[179]  Bernd Borchert Predicate classes, promise classe, and the acceptance power of regular languages , 1994 .