Large Subgraphs without Short Cycles
暂无分享,去创建一个
Michael Krivelevich | Guillem Perarnau | Florent Foucaud | M. Krivelevich | Florent Foucaud | G. Perarnau
[1] Felix Lazebnik,et al. Polarities and 2k-cycle-free graphs , 1999, Discret. Math..
[2] Carsten Thomassen. Girth in graphs , 1983, J. Comb. Theory, Ser. B.
[3] Bruce A. Reed,et al. Colouring a graph frugally , 1997, Comb..
[4] Daniela Kühn,et al. Every Graph of Sufficiently Large Average Degree Contains a C4-Free Subgraph of Large Average Degree , 2004, Comb..
[5] Jacques Verstraëte,et al. A Note on Graphs Without Short Even Cycles , 2005, Electron. J. Comb..
[6] A. Shapira,et al. Extremal Graph Theory , 2013 .
[7] B. Reed. Graph Colouring and the Probabilistic Method , 2001 .
[8] P. Erdös. On the structure of linear graphs , 1946 .
[9] A. Rényii,et al. ON A PROBLEM OF GRAPH THEORY , 1966 .
[10] I. Reiman. Über ein Problem von K. Zarankiewicz , 1958 .
[11] David Conlon,et al. Large subgraphs without complete bipartite graphs , 2014 .
[12] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[13] Jacques Verstraëte,et al. A Note on Bipartite Graphs Without 2k-Cycles , 2005, Combinatorics, Probability and Computing.
[14] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.
[15] M. Simonovits,et al. The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.
[16] Ervin Györi. C6-free bipartite graphs and product representation of squares , 1997, Discret. Math..
[17] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[18] P. Erdos,et al. A LIMIT THEOREM IN GRAPH THEORY , 1966 .
[19] M. Simonovits,et al. Cycles of even length in graphs , 1974 .
[20] F. Lazebnik,et al. A new series of dense graphs of high girth , 1995, math/9501231.
[21] Magyar Tudományos Akadémia. Acta mathematica Hungarica , 1983 .