On the complexity of H-colouring planar graphs

We show that if H is an odd-cycle, or any non-bipartite graph of girth 5 and maximum degree at most 3, then planar H-COL is NP-complete.

[1]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[2]  R. Naserasr Homomorphisms and bounds , 2003 .

[3]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[4]  Pavol Hell,et al.  Universality of A-mote Graphs , 1993, Eur. J. Comb..

[5]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[6]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[7]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Zsolt Tuza,et al.  Algorithmic complexity of list colorings , 1994, Discret. Appl. Math..

[9]  Bojan Mohar,et al.  Acyclic Homomorphisms and Circular Colorings of Digraphs , 2003, SIAM J. Discret. Math..

[10]  A. Petermann ON THE FOUR-COLOR-MAP THEOREM , 2004 .

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[13]  Jaroslav Nesetril,et al.  The complexity of H-colouring of bounded degree graphs , 2000, Discret. Math..