An extended APOBEC3A mutation signature in cancer

[1]  A. Bhagwat,et al.  An extended APOBEC3A mutation signature in , 2021 .

[2]  Angela G. Fleischman,et al.  Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots , 2020, Nature Communications.

[3]  D. Largaespada,et al.  APOBEC3A catalyzes mutation and drives carcinogenesis in vivo , 2019, bioRxiv.

[4]  Tony M Mertz,et al.  APOBEC3A is a prominent cytidine deaminase in breast cancer , 2019, PLoS genetics.

[5]  M. Lawrence,et al.  GTP-dependent formation of multimeric G-quadruplexes. , 2019, ACS chemical biology.

[6]  M. Lawrence,et al.  Genome-wide mapping of regions preferentially targeted by the human DNA-cytosine deaminase APOBEC3A using uracil-DNA pulldown and sequencing , 2019, The Journal of Biological Chemistry.

[7]  Michael S. Lawrence,et al.  Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features , 2019, Science.

[8]  Julian M. Hess,et al.  Passenger Hotspot Mutations in Cancer , 2019, bioRxiv.

[9]  P. Agrawal,et al.  HumCFS: a database of fragile sites in human chromosomes , 2017, BMC Genomics.

[10]  M. Stratton,et al.  Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis , 2019, Cell.

[11]  Z. Cai,et al.  Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer , 2019, Nature Communications.

[12]  M. Shapiro,et al.  Evolutionary effects of the AID/APOBEC family of mutagenic enzymes on human gamma-herpesviruses , 2019, Virus evolution.

[13]  Li Ding,et al.  Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. , 2018, Cell systems.

[14]  C. Swanton,et al.  Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution , 2018, Annals of oncology : official journal of the European Society for Medical Oncology.

[15]  P. Agrawal,et al.  HumCFS: a database of fragile sites in human chromosomes , 2017, bioRxiv.

[16]  Shraddha Sharma,et al.  Stem-loop structure preference for site-specific RNA editing by APOBEC3A and APOBEC3G , 2017, PeerJ.

[17]  M. Lawrence,et al.  APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR Inhibition. , 2017, Cancer research.

[18]  S. Morganella,et al.  Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis , 2017, bioRxiv.

[19]  Trevor J Pugh,et al.  Recurrent and functional regulatory mutations in breast cancer , 2017, Nature.

[20]  S. Patnaik,et al.  Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes , 2017, RNA biology.

[21]  C. Schiffer,et al.  Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity , 2017, Nature Communications.

[22]  S. Wain-Hobson,et al.  Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage , 2017, Nucleic acids research.

[23]  Rommie E. Amaro,et al.  Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B , 2016, Nature Structural &Molecular Biology.

[24]  M. Lawrence,et al.  Altered biochemical specificity of G-quadruplexes with mutated tetrads , 2016, Nucleic acids research.

[25]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[26]  P. Mieczkowski,et al.  APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication. , 2016, Cell reports.

[27]  Haixu Tang,et al.  Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in Escherichia coli , 2016, Proceedings of the National Academy of Sciences.

[28]  S. Antonarakis,et al.  APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication , 2016, Genome research.

[29]  P. Hanawalt,et al.  Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair , 2016, Cell.

[30]  金雷,et al.  Flexibility of nucleic acids: From DNA to RNA , 2016 .

[31]  Steven A. Roberts,et al.  APOBEC-Induced Cancer Mutations Are Uniquely Enriched in Early-Replicating, Gene-Dense, and Active Chromatin Regions. , 2015, Cell reports.

[32]  Z. Tan,et al.  Flexibility of nucleic acids: from DNA to RNA , 2015, 1509.06450.

[33]  Gad Getz,et al.  An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers , 2015, Nature Genetics.

[34]  S. Henderson,et al.  APOBEC3 genes: retroviral restriction factors to cancer drivers. , 2015, Trends in molecular medicine.

[35]  S. Henderson,et al.  Trends in Molecular Medicine APOBEC 3 genes : retroviral restriction factors to cancer drivers , 2015 .

[36]  S. Henderson,et al.  APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. , 2014, Cell reports.

[37]  A. Poon,et al.  Evidence of Pervasive Biologically Functional Secondary Structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses , 2013, Journal of Virology.

[38]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[39]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[40]  N. A. Temiz,et al.  Evidence for APOBEC3B mutagenesis in multiple human cancers , 2013, Nature Genetics.

[41]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[42]  Jason B. Nikas,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[43]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[44]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[45]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[46]  M. McElrath,et al.  Innate Immune Signaling Induces High Levels of TC-specific Deaminase Activity in Primary Monocyte-derived Cells through Expression of APOBEC3A Isoforms* , 2010, The Journal of Biological Chemistry.

[47]  M. Stenglein,et al.  APOBEC3 proteins mediate the clearance of foreign DNA from human cells , 2010, Nature Structural &Molecular Biology.

[48]  C. Lilley,et al.  APOBEC3A Is a Potent Inhibitor of Adeno-Associated Virus and Retrotransposons , 2006, Current Biology.

[49]  M. Frank-Kamenetskii,et al.  Base-stacking and base-pairing contributions into thermal stability of the DNA double helix , 2006, Nucleic acids research.

[50]  M. Malim,et al.  Cytidine Deamination of Retroviral DNA by Diverse APOBEC Proteins , 2004, Current Biology.

[51]  B. Alberts,et al.  From DNA to RNA , 2002 .

[52]  S. Brill,et al.  Functional Analysis of the Four DNA Binding Domains of Replication Protein A , 2001, The Journal of Biological Chemistry.

[53]  J. SantaLucia,et al.  Thermodynamic parameters for DNA sequences with dangling ends. , 2000, Nucleic acids research.

[54]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Wold,et al.  Interactions of human replication protein A with oligonucleotides. , 1994, Biochemistry.