AAS 15-413 A LABELED MULTI-BERNOULLI FILTER FOR SPACE OBJECT TRACKING

To maintain custody of the increasing number of detectable objects in Earth orbit, tracking systems require robust methods of multi-target state estimation and prediction. One alternative to the classic multiple hypothesis and probabilistic data association methods uses a random finite set for modeling the multi-target state. The common forms of such filters sacrifice knowledge of specific targets for the sake of tractability. This paper presents a labeled multi-Bernoulli filter for tracking space objects, which allows for the identification of individual targets. This version of the filter includes a new-target birth model based on the admissible region and non-Gaussian propagation of the single-target state probability density function. The benefits of the filter are then demonstrated for the tracking of both previously known and newly detected objects near geosynchronous orbit.

[1]  Alessandro Rossi,et al.  Orbit determination of space debris: admissible regions , 2007 .

[2]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[3]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[4]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[6]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[7]  Kyle J. DeMars,et al.  Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems , 2013 .

[8]  M. Holzinger,et al.  Probabilistic Tracklet Characterization and Prioritization Using Admissible Regions , 2014 .

[9]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[10]  Daniel J. Scheeres,et al.  Association of optical tracklets from a geosynchronous belt survey via the direct Bayesian admissible region approach , 2014 .

[11]  Daniel J. Scheeres,et al.  Correlation of Optical Observations of Earth-Orbiting Objects and Initial Orbit Determination , 2012 .

[12]  John L. Junkins,et al.  Non-Gaussian error propagation in orbital mechanics , 1996 .

[13]  Kyle J. DeMars,et al.  Probabilistic Initial Orbit Determination Using Gaussian Mixture Models , 2013 .

[14]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[15]  B. Vo,et al.  Data Association and Track Management for the Gaussian Mixture Probability Hypothesis Density Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Penina Axelrad,et al.  Measurement-based Birth Model for a Space Object Cardinalized Probability Hypothesis Density Filter , 2014 .

[17]  Kyle J. DeMars,et al.  An AEGIS-FISST integrated detection and tracking approach to Space Situational Awareness , 2012, 2012 15th International Conference on Information Fusion.

[18]  Kyle J. DeMars,et al.  An AEGIS-FISST Algorithm for Multiple Object Tracking in Space Situational Awareness , 2012 .

[19]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[20]  Shannon L. Coffey,et al.  Uncorrelated observations processing at Naval Space Command , 2002 .

[21]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[22]  M. Cheng,et al.  GGM02 – An improved Earth gravity field model from GRACE , 2005 .

[23]  Chris Sabol,et al.  Search and Determine Integrated Environment (SADIE) for Automated Processing of Space Surveillance Observations (Invited) , 2014 .

[24]  P. Kuchynka,et al.  The Planetary and Lunar Ephemerides DE430 and DE431 , 2014 .

[25]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[26]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[27]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[28]  Ba-Ngu Vo,et al.  Towards large scale multi-target tracking , 2014, Defense + Security Symposium.

[29]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[30]  K. G. Murty An Algorithm for Ranking All the Assignment in Order of Increasing Cost , 1968 .