Improving moisture content estimation from field resistivity measurements with subsurface structure information

[1]  T. Kelleners,et al.  Hydrogeophysical Inversion of Time‐Lapse ERT Data to Determine Hillslope Subsurface Hydraulic Properties , 2022, Water Resources Research.

[2]  D. Or,et al.  Lasting Effects of Soil Compaction on Soil Water Regime Confirmed by Geoelectrical Monitoring , 2022, Water Resources Research.

[3]  Florian M. Wagner,et al.  An overview of multimethod imaging approaches in environmental geophysics , 2021, Inversion of Geophysical Data.

[4]  G. Schäfer,et al.  Investigating the role of deep weathering in critical zone evolution by reactive transport modeling of the geochemical composition of deep fracture water , 2021 .

[5]  J. McDonnell,et al.  Fill‐and‐Spill: A Process Description of Runoff Generation at the Scale of the Beholder , 2021, Water Resources Research.

[6]  T. Günther,et al.  Improved hydrogeophysical imaging by structural coupling of 2D magnetic resonance and electrical resistivity tomography , 2021 .

[7]  A. Binley,et al.  Advancing hydrological process understanding from long‐term resistivity monitoring systems , 2021, WIREs Water.

[8]  Andrew Binley,et al.  Efficient multi-scale imaging of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion , 2021, Geophysical Journal International.

[9]  A. Baker,et al.  Time lapse electric resistivity tomography to portray infiltration and hydrologic flow paths from surface to cave , 2020 .

[10]  T. Günther,et al.  Magnetic resonance tomography constrained by ground-penetrating radar for improved hydrogeophysical characterization , 2020 .

[11]  W. Dietrich,et al.  Oak Transpiration Drawn From the Weathered Bedrock Vadose Zone in the Summer Dry Season , 2020, Water Resources Research.

[12]  U. Ofterdinger,et al.  Quantification of groundwater storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: Sensitivity and uncertainty associated with petrophysical modelling , 2020, Journal of Hydrology.

[13]  J. Bull,et al.  Experimental assessment of the stress-sensitivity of combined elastic and electrical anisotropy in shallow reservoir sandstones , 2020, GEOPHYSICS.

[14]  A. Binley,et al.  Integrated hydrogeophysical modelling and data assimilation for geoelectrical leak detection. , 2020, Journal of contaminant hydrology.

[15]  Y. Kuzmin,et al.  The Influence of Fracturing of the Rocks and Model Materials on P-Wave Propagation Velocity: Experimental Studies , 2020, Izvestiya, Physics of the Solid Earth.

[16]  D. Rempe,et al.  Quantifying Dynamic Water Storage in Unsaturated Bedrock with Borehole Nuclear Magnetic Resonance , 2020, Geophysical Research Letters.

[17]  K. Williams,et al.  Predicting sedimentary bedrock subsurface weathering fronts and weathering rates , 2019, Scientific Reports.

[18]  B. Fan,et al.  Preferential flow through shallow fractured bedrock and a 3D fill-and-spill model of hillslope subsurface hydrology , 2019, Journal of Hydrology.

[19]  C. Riebe,et al.  Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss , 2019, Science Advances.

[20]  A. Binley,et al.  On the Field Estimation of Moisture Content Using Electrical Geophysics: The Impact of Petrophysical Model Uncertainty , 2019, Water Resources Research.

[21]  Z. Yue,et al.  Applications of Digital Image Correlation (DIC) and the Strain Gage Method for Measuring Dynamic Mode I Fracture Parameters of the White Marble Specimen , 2019, Rock Mechanics and Rock Engineering.

[22]  N. Linde,et al.  Probabilistic inference of subsurface heterogeneity and interface geometry using geophysical data , 2019, Geophysical Journal International.

[23]  C. Riebe,et al.  Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone , 2019, Scientific Reports.

[24]  W. Holbrook,et al.  Characterizing the Critical Zone Using Borehole and Surface Nuclear Magnetic Resonance , 2019, Vadose Zone Journal.

[25]  D. Grana,et al.  Estimating the water holding capacity of the critical zone using near‐surface geophysics , 2018, Hydrological Processes.

[26]  C. Riebe,et al.  Critical Zone Structure Under a Granite Ridge Inferred From Drilling and Three‐Dimensional Seismic Refraction Data , 2018, Journal of Geophysical Research: Earth Surface.

[27]  E. Keilegavlen,et al.  Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches , 2018, Transport in Porous Media.

[28]  T. Günther,et al.  Geostatistical regularization operators for geophysical inverse problems on irregular meshes , 2018 .

[29]  W. Dietrich,et al.  Direct observations of rock moisture, a hidden component of the hydrologic cycle , 2018, Proceedings of the National Academy of Sciences.

[30]  Denie C. M. Augustijn,et al.  The Raam regional soil moisture monitoring network in the Netherlands , 2018 .

[31]  James Irving,et al.  On uncertainty quantification in hydrogeology and hydrogeophysics , 2017 .

[32]  Thomas Günther,et al.  pyGIMLi: An open-source library for modelling and inversion in geophysics , 2017, Comput. Geosci..

[33]  N. Glenn,et al.  Form and function relationships revealed by long‐term research in a semiarid mountain catchment , 2017 .

[34]  M. Jessell,et al.  Uncertainty estimation for a geological model of the Sandstone greenstone belt, Western Australia – insights from integrated geological and geophysical inversion in a Bayesian inference framework , 2017, Special Publications.

[35]  Jie Zhang,et al.  First‐arrival traveltime tomography with modified total‐variation regularization , 2017 .

[36]  P. Glover A new theoretical interpretation of Archie’s saturation exponent , 2017 .

[37]  R. Haggerty,et al.  Pore network modeling of the electrical signature of solute transport in dual‐domain media , 2017 .

[38]  J. Vrugt,et al.  Bayesian model selection in hydrogeophysics: Application to conceptual subsurface models of the South Oyster Bacterial Transport Site, Virginia, USA , 2017 .

[39]  Niklas Linde,et al.  On structure-based priors in Bayesian geophysical inversion , 2017 .

[40]  Venkat Lakshmi,et al.  Soil Moisture Remote Sensing: State‐of‐the‐Science , 2017 .

[41]  K. Sims,et al.  Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system , 2016 .

[42]  N. Linde,et al.  Joint Inversion in Hydrogeophysics and Near‐Surface Geophysics , 2016, 1701.01626.

[43]  C. Riebe,et al.  Geophysical imaging reveals topographic stress control of bedrock weathering , 2015, Science.

[44]  Susan S. Hubbard,et al.  The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales , 2015, Water resources research.

[45]  A. Flores,et al.  Bedrock Infiltration Estimates from a Catchment Water Storage-Based Modeling Approach in the Rain Snow Transition Zone , 2015 .

[46]  Z. Easton,et al.  Assessing BMP Effectiveness and Guiding BMP Planning Using Process‐Based Modeling , 2015 .

[47]  Yu-Hsing Wang,et al.  The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils , 2015 .

[48]  B. Minsley,et al.  Multiscale geophysical imaging of the critical zone , 2015 .

[49]  V. Lapenna,et al.  Electrical resistivity tomography technique for landslide investigation: A review , 2014 .

[50]  Allen G. Hunt,et al.  Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories , 2014 .

[51]  Dave Hale,et al.  Image-guided inversion of electrical resistivity data , 2014 .

[52]  Pariva Dobriyal,et al.  A review of the methods available for estimating soil moisture and its implications for water resource management , 2012 .

[53]  Frederick D. Day-Lewis,et al.  Monitoring groundwater‐surface water interaction using time‐series and time‐frequency analysis of transient three‐dimensional electrical resistivity changes , 2012 .

[54]  T. Günther,et al.  Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization , 2012 .

[55]  J. McNamara,et al.  Aspect influences on soil water retention and storage , 2011 .

[56]  Marnik Vanclooster,et al.  Electrical Resistivity in a Loamy Soil: Identification of the Appropriate Pedo‐Electrical Model , 2011 .

[57]  S. P. Anderson,et al.  Seismic Constraints on Critical Zone Architecture, Boulder Creek Watershed, Front Range, Colorado , 2011 .

[58]  A. Robock,et al.  A New International Network for in Situ Soil Moisture Data , 2011 .

[59]  Niklas Linde,et al.  3D crosshole ERT for aquifer characterization and monitoring of infiltrating river water , 2011 .

[60]  Jan Vanderborght,et al.  Three‐Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics , 2011 .

[61]  J. A. Pulgar,et al.  Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods , 2010 .

[62]  Andrew Binley,et al.  Structural joint inversion of time‐lapse crosshole ERT and GPR traveltime data , 2010 .

[63]  Alfonso Calera,et al.  Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (HIDROMORE) , 2010 .

[64]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[65]  Samsudin Taib,et al.  Comparison of Wenner and dipole?dipole arrays in the study of an underground three-dimensional cavity , 2010 .

[66]  Claude Doussan,et al.  Prediction of unsaturated soil hydraulic conductivity with electrical conductivity , 2009 .

[67]  Adam Pidlisecky,et al.  FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code , 2008, Comput. Geosci..

[68]  R. Knight,et al.  Soil Moisture Measurement for Ecological and Hydrological Watershed‐Scale Observatories: A Review , 2008 .

[69]  A. Showman,et al.  Implications of shear heating and fracture zones for ridge formation on Europa , 2007 .

[70]  Wolfgang Wagner,et al.  Comparison of soil moisture fields estimated by catchment modelling and remote sensing: a case study in South Africa , 2007 .

[71]  Andrew Binley,et al.  Synthetic and field-based electrical imaging of a zerovalent iron barrier: Implications for monitoring long-term barrier performance , 2006 .

[72]  David G. Chandler,et al.  Soil moisture states, lateral flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment , 2005 .

[73]  E. Auken,et al.  Combination of 1D laterally constrained inversion and 2D smooth inversion of resistivity data with a priori data from boreholes , 2005 .

[74]  Shmulik P. Friedman,et al.  Soil properties influencing apparent electrical conductivity: a review , 2005 .

[75]  W. Holbrook,et al.  Inferring crustal structure in the Aleutian island arc from a sparse wide‐angle seismic data set , 2004 .

[76]  M. Meju,et al.  Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints , 2004 .

[77]  Günter Blöschl,et al.  Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes , 2004 .

[78]  Jason J. Z. Liao,et al.  An improved concordance correlation coefficient , 2003 .

[79]  A. Ward,et al.  A Tensorial Connectivity–Tortuosity Concept to Describe the Unsaturated Hydraulic Properties of Anisotropic Soils , 2003 .

[80]  J. G. King,et al.  Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales , 2001 .

[81]  M. Nafi Toksöz,et al.  Nonlinear refraction traveltime tomography , 1998 .

[82]  F. Boadu Inversion of fracture density from field seismic velocities using artificial neural networks , 1998 .

[83]  Jari P. Kaipio,et al.  Tikhonov regularization and prior information in electrical impedance tomography , 1998, IEEE Transactions on Medical Imaging.

[84]  P. Glover,et al.  Nature of surface electrical conductivity in natural sands, sandstones, and clays , 1998 .

[85]  F. Boadu,et al.  Effects of fractures on seismic-wave velocity and attenuation , 1996 .

[86]  J. Berryman Single‐scattering approximations for coefficients in Biot’s equations of poroelasticity , 1992 .

[87]  Shmulik P. Friedman,et al.  Theoretical Prediction of Electrical Conductivity in Saturated and Unsaturated Soil , 1991 .

[88]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[89]  Willem Bouten,et al.  A Computer-Controlled 36-Channel Time Domain Reflectometry System for Monitoring Soil Water Contents , 1990 .

[90]  K. Nakatsuka,et al.  Temperature dependence of the electrical resistivity of water-saturated rocks , 1990 .

[91]  D. J. White,et al.  Two-Dimensional Seismic Refraction Tomography , 1989 .

[92]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[93]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[94]  Robert L. Wesson,et al.  Travel-time inversion for laterally inhomogeneous crustal velocity models , 1971 .

[95]  M. H. Waxman,et al.  Electrical Conductivities in Oil-Bearing Shaly Sands , 1968 .

[96]  Amalendu Roy,et al.  Ambiguity in geophysical interpretation , 1962 .

[97]  N. Linde,et al.  Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection , 2018 .

[98]  G. Pope Regolith and Weathering (Rock Decay) in the Critical Zone , 2015 .