Foundations of Hankel transform algorithms

A brief survey of existing Hankel (Fourier-Bessel) transform algorithms is presented along with a natural way to classify these algorithms. In several cases these algorithms were derived originally by methods that were unnecessarily complicated and not sufficiently general. By using operator notation and Radon transform methods, derivations and generalizations are straightforward. These improvements and generalizations are given at the appropriate places in the discussion

[1]  William E. Higgins,et al.  An algorithm for computing general integer-order Hankel transforms , 1987, IEEE Trans. Acoust. Speech Signal Process..

[2]  A. H. Stroud,et al.  Methods of Numerical Integration—Second Edition (Philip J. Davis and Philip Rabinowitz) , 1986 .

[3]  Alan D. Chave,et al.  Numerical integration of related Hankel transforms by quadrature and continued fraction expansion , 1983 .

[4]  K. Gopalan,et al.  Fast computation of zero order Hankel transform , 1983 .

[5]  S. Deans The Radon Transform and Some of Its Applications , 1983 .

[6]  W. L. Anderson Fast Hankel Transforms Using Related and Lagged Convolutions , 1982, TOMS.

[7]  Walter L. Anderson,et al.  Algorithm 588: Fast Hankel Transforms Using Related and Lagged Convolutions , 1982, TOMS.

[8]  Neal C. Gallagher,et al.  Fast algorithm for the computation of zero-order Hankel transform (A) , 1981 .

[9]  S. Candel,et al.  Simultaneous calculation of Fourier-bessel transforms up to order N , 1981 .

[10]  S. Candel,et al.  Dual algorithms for fast calculation of the Fourier-Bessel transform , 1981 .

[11]  S. Candel,et al.  An algorithm for the Fourier-Bessel transform , 1981 .

[12]  A. Oppenheim,et al.  Computation of the Hankel transform using projections , 1980 .

[13]  S. Helgason,et al.  The Radon Transform , 1980 .

[14]  F. R. DiNapoli,et al.  Theoretical and numerical Green’s function field solution in a plane multilayered medium , 1980 .

[15]  J. D. Talman,et al.  Numerical Fourier and Bessel transforms in logarithmic variables , 1978 .

[16]  A. Oppenheim,et al.  An algorithm for the numerical evaluation of the Hankel transform , 1978, Proceedings of the IEEE.

[17]  R. Verma,et al.  Detectability by Electromagnetic Sounding Systems , 1977, IEEE Transactions on Geoscience Electronics.

[18]  P. Cornille,et al.  Computation of Hankel Transforms , 1972 .

[19]  G. Arfken,et al.  Mathematical Methods for Physicists (Second Edition) , 1971 .

[20]  T. N. L. Patterson Table errata: “The optimum addition of points to quadrature formulae” (Math. Comp. 22 (1968), 847–856; addendum, ibid. 22 (1968), no. 104, loose microfiche suppl. C1-C11) , 1969 .

[21]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[22]  P. Davis,et al.  Methods of Numerical Integration , 1985 .

[23]  G. Arfken Mathematical Methods for Physicists , 1967 .

[24]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[25]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[26]  I. M. Longman Tables for the rapid and accurate numerical evaluation of certain infinite integrals involving Bessel functions , 1957 .

[27]  I. M. Longman,et al.  Note on a method for computing infinite integrals of oscillatory functions , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .