On Super Edge-Antimagicness of Circulant Graphs

A labeling of a graph is a mapping that carries some sets of graph elements into numbers (usually the positive integers). An $$(a,d)$$(a,d)-edge-antimagic total labeling of a graph $$G(V,E)$$G(V,E) is a one-to-one mapping $$f$$f from $$V(G)\cup E(G)$$V(G)∪E(G) onto the set $$\{1,2,\dots , |V(G)|+|E(G)|\}$${1,2,⋯,|V(G)|+|E(G)|}, such that the set of all the edge-weights, $$wt_f (uv) = f(u) +f(uv)+f(v)$$wtf(uv)=f(u)+f(uv)+f(v), $$uv\in E(G)$$uv∈E(G), forms an arithmetic sequence starting from $$a$$a and having a common difference $$d$$d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper we study the existence of such labelings for circulant graphs.

[1]  Petr Kovár,et al.  On super (a, 1)-edge-antimagic total labelings of regular graphs , 2010, Discret. Math..

[2]  Andrea Semanicová-Fenovcíková,et al.  On super (a, d)-edge-antimagic total labeling of disconnected graphs , 2009, Discret. Math..

[3]  Edy Tri Baskoro,et al.  Super edge-antimagic labelings of the generalized Petersen graph P(n, (n - 1)/2) , 2006 .

[4]  D. West Introduction to Graph Theory , 1995 .

[5]  W. Wallis,et al.  Magic Graphs , 2001 .

[6]  Clemens Heuberger,et al.  On planarity and colorability of circulant graphs , 2003, Discret. Math..

[7]  Ramón M. Figueroa-Centeno,et al.  The place of super edge-magic labelings among other classes of labelings , 2001, Discret. Math..

[8]  A. Kotzig,et al.  Magic Valuations of Finite Graphs , 1970, Canadian Mathematical Bulletin.

[9]  Yehuda Roditty,et al.  All Cycles are Edge-Magic , 2001, Ars Comb..

[10]  D. Frank Hsu,et al.  Distributed Loop Computer Networks: A Survey , 1995, J. Parallel Distributed Comput..

[11]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[12]  Mirka Miller,et al.  Edge-antimagic graphs , 2007, Discret. Math..

[13]  Kashif Ali,et al.  On super antimagic total labeling of Harary graph , 2012, Ars Comb..

[14]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[15]  Andrea Semanicová-Fenovcíková,et al.  On connection between α-labelings and edge-antimagic labelings of diconnected graphs , 2012, Ars Comb..

[16]  Ralph Tindell,et al.  Circulants and their connectivities , 1984, J. Graph Theory.