Approximation algorithms for grammar-based data compression
暂无分享,去创建一个
This thesis considers the smallest grammar problem: find the smallest context-free grammar that generates exactly one given string. We show that this problem is intractable, and so our objective is to find approximation algorithms. This simple question is connected to many areas of research. Most importantly, there is a link to data compression; instead of storing a long string, one can store a small grammar that generates it. A small grammar for a string also naturally brings out underlying patterns, a fact that is useful, for example, in DNA analysis. Moreover, the size of the smallest context-free grammar generating a string can be regarded as a computable relaxation of Kolmogorov complexity. Finally, work on the smallest grammar problem qualitatively extends the study of approximation algorithms to hierarchically-structured objects. In this thesis, we establish hardness results, evaluate several previously proposed algorithms, and then present new procedures with much stronger approximation guarantees. Thesis Supervisor: Madhu Sudan Title: Associate Professor of Electrical Engineering and Computer Science