A construction of (t,s)-sequences with finite-row generating matrices using global function fields

For any prime power $q$ and any dimension $s \ge 1$, we present a construction of $(t,s)$-sequences in base $q$ with finite-row generating matrices such that, for fixed $q$, the quality parameter $t$ is asymptotically optimal as a function of $s$ as $s \to \infty$. This is the first construction of $(t,s)$-sequences that yields finite-row generating matrices and asymptotically optimal quality parameters at the same time. The construction is based on global function fields. We put the construction into the framework of $(u,{\bf e},s)$-sequences that was recently introduced by Tezuka. In this way we obtain in many cases better discrepancy bounds for the constructed sequences than by previous methods for bounding the discrepancy.

[1]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  Harald Niederreiter,et al.  On the exact t-value of Niederreiter and Sobol' sequences , 2008, J. Complex..

[4]  Rudolf Schürer A New Lower Bound on the t-Parameter of (t, s)-Sequences , 2008 .

[5]  手塚 集 Uniform random numbers : theory and practice , 1995 .

[6]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[7]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[8]  Shu Tezuka,et al.  Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.

[9]  Christiane Lemieux,et al.  Improvements on the star discrepancy of (t,s)-sequences , 2012 .

[10]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[11]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[12]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[13]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[14]  Peter Kritzer,et al.  New star discrepancy bounds for $$(t,m,s)$$-nets and $$(t,s)$$-sequences , 2013 .

[15]  Harald Niederreiter,et al.  Finite Fields and Quasirandom Points , 2013, Finite Fields and Their Applications.

[16]  Roswitha Hofer,et al.  A construction of digital (0, s)-sequences involving finite-row generator matrices , 2012, Finite Fields Their Appl..

[17]  R. Hofer,et al.  A construction of low-discrepancy sequences involving finite-row digital $$(t,s)$$-sequences , 2013 .

[18]  Gerhard Larcher,et al.  On existence and discrepancy of certain digital Niederreiter-Halton sequences , 2010 .

[19]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[20]  Harald Niederreiter,et al.  Quasi-Monte Carlo Methods for Multidimensional Numerical Integration , 1988 .

[21]  Peter Kritzer,et al.  Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..

[22]  Shu Tezuka,et al.  On the discrepancy of generalized Niederreiter sequences , 2013, J. Complex..

[23]  H. Niederreiter,et al.  A new construction of (t, s)-sequences and some improved bounds on their quality parameter , 2007 .

[24]  Ein analogon zum Primzahlsatz für algebraische Funktionenkörper , 1990 .

[25]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[26]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .