A construction of (t,s)-sequences with finite-row generating matrices using global function fields
暂无分享,去创建一个
[1] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[2] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[3] Harald Niederreiter,et al. On the exact t-value of Niederreiter and Sobol' sequences , 2008, J. Complex..
[4] Rudolf Schürer. A New Lower Bound on the t-Parameter of (t, s)-Sequences , 2008 .
[5] 手塚 集. Uniform random numbers : theory and practice , 1995 .
[6] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[7] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[8] Shu Tezuka,et al. Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.
[9] Christiane Lemieux,et al. Improvements on the star discrepancy of (t,s)-sequences , 2012 .
[10] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[11] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[12] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[13] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[14] Peter Kritzer,et al. New star discrepancy bounds for $$(t,m,s)$$-nets and $$(t,s)$$-sequences , 2013 .
[15] Harald Niederreiter,et al. Finite Fields and Quasirandom Points , 2013, Finite Fields and Their Applications.
[16] Roswitha Hofer,et al. A construction of digital (0, s)-sequences involving finite-row generator matrices , 2012, Finite Fields Their Appl..
[17] R. Hofer,et al. A construction of low-discrepancy sequences involving finite-row digital $$(t,s)$$-sequences , 2013 .
[18] Gerhard Larcher,et al. On existence and discrepancy of certain digital Niederreiter-Halton sequences , 2010 .
[19] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[20] Harald Niederreiter,et al. Quasi-Monte Carlo Methods for Multidimensional Numerical Integration , 1988 .
[21] Peter Kritzer,et al. Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..
[22] Shu Tezuka,et al. On the discrepancy of generalized Niederreiter sequences , 2013, J. Complex..
[23] H. Niederreiter,et al. A new construction of (t, s)-sequences and some improved bounds on their quality parameter , 2007 .
[24] Ein analogon zum Primzahlsatz für algebraische Funktionenkörper , 1990 .
[25] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[26] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .