Parallel Molecular Distributed Detection With Brownian Motion

This paper explores the in vivo distributed detection of an undesired biological agent’s (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.

[1]  Nasibeh Rady Raz,et al.  Bioinspired Nanonetworks for Targeted Cancer Drug Delivery , 2015, IEEE Transactions on NanoBioscience.

[2]  Mauro Femminella,et al.  Modeling CD40-Based Molecular Communications in Blood Vessels , 2014, IEEE Transactions on NanoBioscience.

[3]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[4]  H. Daniels Saddlepoint Approximations in Statistics , 1954 .

[5]  Raviraj S. Adve,et al.  Molecular Communication Using Brownian Motion With Drift , 2010, IEEE Transactions on NanoBioscience.

[6]  A. Vasilakos,et al.  Molecular Communication Among Biological Nanomachines: A Layered Architecture and Research Issues , 2014, IEEE Transactions on NanoBioscience.

[7]  Valeria Loscri,et al.  An Acoustic Communication Technique of Nanorobot Swarms for Nanomedicine Applications , 2015, IEEE Transactions on NanoBioscience.

[8]  A. Lehninger Principles of Biochemistry , 1984 .

[9]  Tadashi Nakano,et al.  Molecular Communication , 2005 .

[10]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[11]  Antony Thomas,et al.  Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation. , 2011, Soft matter.

[12]  M. Sheikholeslami,et al.  Two-Phase Simulation of Nanofluid Flow and Heat Transfer in an Annulus in the Presence of an Axial Magnetic Field , 2015, IEEE Transactions on Nanotechnology.

[13]  Aleksander S. Popel,et al.  A compartment model of VEGF distribution in blood, healthy and diseased tissues , 2008, BMC Systems Biology.

[14]  Periklis Papavasileiou,et al.  Blood velocity pulse quantification in the human conjunctival pre-capillary arterioles. , 2010, Microvascular research.

[15]  A. Alfa,et al.  An Analytical Model for Molecular Propagation in Nanocommunication via Filaments Using Relay-Enabled Nodes , 2015, IEEE Transactions on NanoBioscience.

[16]  Pramod K. Varshney,et al.  Distributed detection with multiple sensors I. Fundamentals , 1997, Proc. IEEE.

[17]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[18]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .

[19]  P. Couvreur,et al.  Nanotechnology: Intelligent Design to Treat Complex Disease , 2006, Pharmaceutical Research.

[20]  A. Vasilakos,et al.  Molecular Communication and Networking: Opportunities and Challenges , 2012, IEEE Transactions on NanoBioscience.

[21]  Tad Hogg,et al.  Nanorobot architecture for medical target identification , 2008 .

[22]  Harvey N. Mayrovitz,et al.  Blood velocity measurement in human conjunctival vessels. , 1981, Cardiovascular diseases.

[23]  Özgür B. Akan,et al.  Bio-inspired networking: from theory to practice , 2010, IEEE Communications Magazine.

[24]  Robert Schober,et al.  A Unifying Model for External Noise Sources and ISI in Diffusive Molecular Communication , 2013, IEEE Journal on Selected Areas in Communications.

[25]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[26]  Rick S. Blum,et al.  Distributed detection with multiple sensors I. Advanced topics , 1997, Proc. IEEE.

[27]  Juan Carlos Abril,et al.  Saddlepoint Approximations , 2011, International Encyclopedia of Statistical Science.

[28]  H. E. Daniels,et al.  Tail Probability Approximations , 1987 .

[29]  Allen T. Craig,et al.  Introduction to Mathematical Statistics (6th Edition) , 2005 .

[30]  Moe Z. Win,et al.  Data Fusion Trees for Detection: Does Architecture Matter? , 2008, IEEE Transactions on Information Theory.

[31]  Athanasios V. Vasilakos,et al.  A Molecular Communications Model for Drug Delivery , 2015, IEEE Transactions on NanoBioscience.

[32]  John N. Tsitsiklis,et al.  Decentralized detection by a large number of sensors , 1988, Math. Control. Signals Syst..

[33]  R. Pemantle,et al.  Martin capacity for Markov chains , 1995, math/0404054.

[34]  Andrew W. Eckford,et al.  Symbol Interval Optimization for Molecular Communication With Drift , 2014, IEEE Transactions on NanoBioscience.

[35]  Chan-Byoung Chae,et al.  Novel Modulation Techniques using Isomers as Messenger Molecules for Nano Communication Networks via Diffusion , 2012, IEEE Journal on Selected Areas in Communications.

[36]  I. Karádi,et al.  Metastasis blood test by flow cytometry: In vivo cancer spheroids and the role of hypoxia , 2015, International journal of cancer.

[37]  D. Rajan Probability, Random Variables, and Stochastic Processes , 2017 .

[38]  J. T. Edward,et al.  Molecular Volumes and the Stokes-Einstein Equation. , 1970 .

[39]  Rick S. Blum,et al.  The good, bad and ugly: distributed detection of a known signal in dependent Gaussian noise , 2000, IEEE Trans. Signal Process..

[40]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[41]  P.K. Varshney,et al.  Optimal Data Fusion in Multiple Sensor Detection Systems , 1986, IEEE Transactions on Aerospace and Electronic Systems.