Female Mate Choice Can Drive the Evolution of High Frequency Echolocation in Bats: A Case Study with Rhinolophus mehelyi

Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.

[1]  W. Metzner,et al.  Vocalization during copulation behavior in greater horseshoe bats, Rhinolophus ferrumequinum , 2013 .

[2]  D. Reby,et al.  Female red deer prefer the roars of larger males , 2007, Biology Letters.

[3]  Shuyi Zhang,et al.  Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum , 2006, Journal of Comparative Physiology A.

[4]  H. Schnitzler,et al.  From spatial orientation to food acquisition in echolocating bats , 2003 .

[5]  N. Davies,et al.  Deep croaks and fighting assessment in toads Bufo bufo , 1978, Nature.

[6]  Gareth Jones,et al.  Echolocation calls of bats are influenced by maternal effects and change over a lifetime , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  S. Puechmaille,et al.  Factors Affecting Geographic Variation in Echolocation Calls of the Endemic Myotis davidii in China , 2013 .

[8]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[9]  S. Puechmaille,et al.  Bat fauna of Tunisia: Review of records and new records, morphometrics and echolocation data , 2012 .

[10]  R. Bonduriansky Sexual Selection and Conflict as Engines of Ecological Diversification , 2011, The American Naturalist.

[11]  Wanjun Gu,et al.  Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence , 2010, Molecular ecology resources.

[12]  G. Jones,et al.  Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely’s horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae) , 2001 .

[13]  B. Siemers,et al.  Growth of horseshoe bats (Chiroptera: Rhinolophidae) in temperate continental conditions and the influence of climate , 2007 .

[14]  Matthew R. Wilkins,et al.  Evolutionary divergence in acoustic signals: causes and consequences. , 2013, Trends in ecology & evolution.

[15]  S. Puechmaille,et al.  Horseshoe Bats Recognise the Sex of Conspecifics from Their Echolocation Calls , 2012 .

[16]  M. Knörnschild,et al.  Songs, scents, and senses: sexual selection in the greater sac-winged bat, Saccopteryx bilineata , 2008 .

[17]  D. A. Gray,et al.  Female house crickets, Acheta domesticus , prefer the chirps of large males , 1997, Animal Behaviour.

[18]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[19]  T. Clutton‐Brock,et al.  Female Mate Choice in Mammals , 2009, The Quarterly Review of Biology.

[20]  Alicia M. Frame,et al.  Magic traits in speciation: 'magic' but not rare? , 2011, Trends in ecology & evolution.

[21]  Thierry Aubin,et al.  SEEWAVE, A FREE MODULAR TOOL FOR SOUND ANALYSIS AND SYNTHESIS , 2008 .

[22]  J. Aihartza,et al.  Diet and prey selection in Mehelyi's horseshoe bat Rhinolophus mehelyi (Chiroptera, Rhinolophidae) in the south-western Iberian Peninsula , 2008 .

[23]  I. Horáček,et al.  Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 3. Review of bat distribution in Bulgaria , 2003 .

[24]  Gareth Jones Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species , 1997 .

[25]  M. Holderied,et al.  Bat echolocation calls: adaptation and convergent evolution , 2007, Proceedings of the Royal Society B: Biological Sciences.

[26]  Markus Metz,et al.  Bat echolocation calls facilitate social communication , 2012, Proceedings of the Royal Society B: Biological Sciences.

[27]  J. Kusch,et al.  Structure and variability of bat social calls: implications for specificity and individual recognition , 2003 .

[28]  Surlykke Annemarie Convergent Acoustic Field of View in Echolocating Bats , 2012 .

[29]  J. Aihartza,et al.  Echolocation calls and morphology in the Mehelyi’s ( Rhinolophus mehelyi ) and mediterranean ( R. euryale ) horseshoe bats: implications for resource partitioning , 2006 .

[30]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[31]  N. Ulanovsky,et al.  What the bat's voice tells the bat's brain , 2008, Proceedings of the National Academy of Sciences.

[32]  L. W. Simmons,et al.  The calling song of the field cricket, Gryllus bimaculatus (de geer): constraints on transmission and its role in intermale competition and female choice , 1988, Animal Behaviour.

[33]  T. Riede,et al.  Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). , 1999, The Journal of experimental biology.

[34]  H. Riquimaroux,et al.  Adaptive beam-width control of echolocation sounds by CF–FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight , 2013, Journal of Experimental Biology.

[35]  A. Zahavi Mate selection-a selection for a handicap. , 1975, Journal of theoretical biology.

[36]  B. Siemers,et al.  Behavioral Evidence for Community‐Wide Species Discrimination from Echolocation Calls in Bats , 2010, The American Naturalist.

[37]  B. Siemers,et al.  Variability in Echolocation Call Intensity in a Community of Horseshoe Bats: A Role for Resource Partitioning or Communication? , 2010, PloS one.

[38]  J. Aihartza,et al.  Foraging Ecology in Mehely's Horseshoe Bats: Influence of Habitat Structure and Water Availability , 2012 .

[39]  L. Cosmides,et al.  Adaptations in humans for assessing physical strength from the voice , 2010, Proceedings of the Royal Society B: Biological Sciences.

[40]  Gareth Jones,et al.  From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats , 2013, Front. Physiol..

[41]  B. Milligan,et al.  Maximum-likelihood estimation of relatedness. , 2003, Genetics.

[42]  C. Voigt,et al.  Perch-hunting in insectivorous Rhinolophus bats is related to the high energy costs of manoeuvring in flight , 2010, Journal of Comparative Physiology B.

[43]  David A. Puts,et al.  Mating context and menstrual phase affect women's preferences for male voice pitch , 2005 .

[44]  John Maynard Smith,et al.  Theories of sexual selection. , 1991, Trends in ecology & evolution.

[45]  J. Boughman How sensory drive can promote speciation , 2002 .

[46]  S. Puechmaille,et al.  Characterization of 14 polymorphic microsatellite loci for the lesser horseshoe bat, Rhinolophus hipposideros (Rhinolophidae, Chiroptera) , 2005 .

[47]  A. Khandoker,et al.  Cardiac rehabilitation outcomes following a 6-week program of PCI and CABG Patients , 2013, Front. Physiol..

[48]  E. Kalko,et al.  Echolocating Bats Cry Out Loud to Detect Their Prey , 2008, PloS one.

[49]  E. G. Crichton,et al.  Reproductive biology of bats , 2000 .

[50]  D. Turnbull Pheromones and Animal Behaviour , 2005 .

[51]  B. Siemers,et al.  Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? , 2005 .

[52]  B. Siemers,et al.  The communicative potential of bat echolocation pulses , 2011, Journal of Comparative Physiology A.

[53]  Gary F. McCracken,et al.  Communication in the Chiroptera, M. Brock Fenton. Indiana University Press, Bloomington (1985), ix, +161. Price $35.00 , 1986 .

[54]  Jinliang Wang coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients , 2011, Molecular ecology resources.

[55]  A. Green,et al.  New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method , 2009 .

[56]  T. Wyatt Pheromones and Animal Behavior: Chemical Signals And Signatures , 2014 .

[57]  Habitat selection in sympatric Rhinolophus mehelyi and R. euryale (Mammalia: Chiroptera) , 2005 .

[58]  Jinliang Wang,et al.  An estimator for pairwise relatedness using molecular markers. , 2002, Genetics.

[59]  O. Henson,et al.  Labile cochlear tuning in the mustached bat , 2004, Journal of Comparative Physiology A.

[60]  R. Barclay,et al.  The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? , 2007, Oecologia.

[61]  B. Siemers,et al.  Ground gleaning in horseshoe bats: comparative evidence from Rhinolophus blasii, R. euryale and R. mehelyi , 2004, Behavioral Ecology and Sociobiology.

[62]  Thomas H. Kunz,et al.  Bat Biology and Conservation , 1998 .

[63]  M. Lynch,et al.  Estimation of relatedness by DNA fingerprinting. , 1988, Molecular biology and evolution.

[64]  C. Dietz Aspects of ecomorphology in the five European horseshoe bats (Chiroptera: Rhinolophidae) in the area of sympatry , 2007 .

[65]  H. Schnitzler,et al.  Echolocation signals reflect niche differentiation in five sympatric congeneric bat species , 2004, Nature.

[66]  S. Puechmaille,et al.  Characterization and multiplex genotyping of 16 polymorphic microsatellite loci in the endangered bumble-bee bat, Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) , 2009, Conservation Genetics.

[67]  J. Carpten,et al.  Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. , 1996, BioTechniques.

[68]  Danilo Russo,et al.  Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement? , 2007 .

[69]  W. M. Masters,et al.  Sonar signals of big brown bats, Eptesicus fuscus, contain information about individual identity, age and family affiliation , 1995, Animal Behaviour.

[70]  C. Boggs,et al.  THE EVOLUTION OF WING COLOR: MALE MATE CHOICE OPPOSES ADAPTIVE WING COLOR DIVERGENCE IN COLIAS BUTTERFLIES , 2003, Evolution; international journal of organic evolution.

[71]  S. Rossiter,et al.  Determinants and Patterns of Reproductive Success in the Greater Horseshoe Bat during a Population Recovery , 2014, PloS one.

[72]  M. Fenton Eavesdropping on the echolocation and social calls of bats , 2003 .

[73]  S. Puechmaille,et al.  A new species of Hipposideros (Chiroptera: Hipposideridae) from Vietnam , 2012 .

[74]  Stefano Mariani,et al.  Ecological adaptation determines functional mammalian olfactory subgenomes. , 2010, Genome research.

[75]  J. Aihartza,et al.  What mechanism of niche segregation allows the coexistence of sympatric sibling rhinolophid bats? , 2012, Frontiers in Zoology.

[76]  D E Weeks,et al.  Similarity of DNA fingerprints due to chance and relatedness. , 1993, Human heredity.

[77]  S. Puechmaille,et al.  The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat , 2011, Nature communications.

[78]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[79]  Jinliang Wang,et al.  Triadic IBD coefficients and applications to estimating pairwise relatedness. , 2007, Genetical research.

[80]  R. Sacchi,et al.  Female preference for fast-rate, high-pitched calls in Hermann's tortoises Testudo hermanni , 2005 .

[81]  J. Butler,et al.  AutoDimer: a screening tool for primer-dimer and hairpin structures. , 2004, BioTechniques.

[82]  H. Schnitzler,et al.  Information in sonar echoes of fluttering insects available for echolocating bats , 1990 .