DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS
暂无分享,去创建一个
S. More | E. Rykoff | D. Spergel | R. Mandelbaum | E. Rozo | M. Oguri | M. Takada | A. More | A. Kravtsov | N. Dalal | B. Diemer | H. Miyatake | R. Murata | Ryoma Murata
[1] R. Nichol,et al. THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.
[2] S. More,et al. Evidence of Halo Assembly Bias in Massive Clusters. , 2015, Physical review letters.
[3] R. Mandelbaum,et al. ON DETECTING HALO ASSEMBLY BIAS WITH GALAXY POPULATIONS , 2015, 1504.07632.
[4] F. Kahlhoefer,et al. On the interpretation of dark matter self-interactions in Abell 3827 , 2015, 1504.06576.
[5] S. More,et al. THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS , 2015, 1504.05591.
[6] CEA-Saclay,et al. Detection of universality of dark matter profile from Subaru weak lensing measurements of 50 massive clusters , 2015, 1504.01413.
[7] David Harvey,et al. The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.
[8] Oliver D. Elbert,et al. Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary , 2014, 1412.1477.
[9] F. Prada,et al. MultiDark simulations: the story of dark matter halo concentrations and density profiles , 2014, 1411.4001.
[10] R. Tully,et al. GALAXY GROUPS , 2014, 1411.1511.
[11] E. Rykoff,et al. redMaPPer – IV. Photometric membership identification of red cluster galaxies with 1 per cent precision , 2014, 1410.1193.
[12] N. Dalal,et al. Splashback in accreting dark matter halos , 2014, 1409.4482.
[13] Andrew P. Hearin,et al. Beyond halo mass: galactic conformity as a smoking gun of central galaxy assembly bias , 2014, 1404.6524.
[14] F. V. D. Bosch,et al. Statistics of dark matter substructure – I. Model and universal fitting functions , 2014, 1403.6827.
[15] A. Kravtsov,et al. DEPENDENCE OF THE OUTER DENSITY PROFILES OF HALOS ON THEIR MASS ACCRETION RATE , 2014, 1401.1216.
[16] S. Cole,et al. N-body dark matter haloes with simple hierarchical histories , 2013, 1311.6649.
[17] S. More. COSMOLOGICAL DEPENDENCE OF THE MEASUREMENTS OF LUMINOSITY FUNCTION, PROJECTED CLUSTERING AND GALAXY–GALAXY LENSING SIGNAL , 2013, 1309.2943.
[18] F. Kahlhoefer,et al. Colliding clusters and dark matter self-interactions , 2013, 1308.3419.
[19] A. Finoguenov,et al. redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.
[20] M. Viel,et al. Non-linear evolution of the cosmic neutrino background , 2012, 1212.4855.
[21] Princeton,et al. Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.
[22] Michael J. Kurtz,et al. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS) , 2012, 1209.3786.
[23] Stefano Borgani,et al. Formation of Galaxy Clusters , 2012, 1205.5556.
[24] J. Rhodes,et al. THE CORRELATED FORMATION HISTORIES OF MASSIVE GALAXIES AND THEIR DARK MATTER HALOS , 2012, 1205.4245.
[25] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[26] Risa H. Wechsler,et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.
[27] M. Oguri,et al. Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey , 2011, 1109.2594.
[28] Aniruddha R. Thakar,et al. ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .
[29] M. Oguri,et al. Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies , 2011, 1101.0650.
[30] T. Broadhurst,et al. CLUSTER MASS PROFILES FROM A BAYESIAN ANALYSIS OF WEAK-LENSING DISTORTION AND MAGNIFICATION MEASUREMENTS: APPLICATIONS TO SUBARU DATA , 2010, 1011.3044.
[31] M. Becker,et al. ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS , 2010, 1011.1681.
[32] F. Villaescusa-Navarro,et al. Cores and cusps in warm dark matter halos , 2010, 1010.3008.
[33] R. Mohayaee,et al. Non-spherical similarity solutions for dark halo formation , 2010, 1007.4195.
[34] M. Oguri,et al. Direct measurement of dark matter halo ellipticity from two-dimensional lensing shear maps of 25 massive clusters , 2010, 1004.4214.
[35] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[36] F. Fontanot,et al. Are Brightest Halo Galaxies Central Galaxies , 2010, 1001.4533.
[37] Michael S. Warren,et al. THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.
[38] S. Bridle,et al. A DETECTION OF DARK MATTER HALO ELLIPTICITY USING GALAXY CLUSTER LENSING IN THE SDSS , 2008, 0806.2723.
[39] J. Richard Bond,et al. Halo Assembly Bias in Hierarchical Structure Formation , 2008, 0803.3453.
[40] L. Gao,et al. On halo formation times and assembly bias , 2008, 0803.2250.
[41] S. White,et al. The redshift dependence of the structure of massive Λ cold dark matter haloes , 2007, 0711.0746.
[42] Anthony H. Gonzalez,et al. Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 , 2007, 0704.0261.
[43] Cheng Li,et al. The alignment between satellites and central galaxies: theory versus observations , 2007, astro-ph/0701130.
[44] S. White,et al. Assembly bias in the clustering of dark matter haloes , 2006, astro-ph/0611921.
[45] R. Wechsler,et al. The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.
[46] H. Mo,et al. Observational Evidence for an Age Dependence of Halo Bias , 2005, astro-ph/0509626.
[47] S. White,et al. The age dependence of halo clustering , 2005, astro-ph/0506510.
[48] T. Broadhurst,et al. Can the Steep Mass Profile of A1689 Be Explained by a Triaxial Dark Halo? , 2005, astro-ph/0505452.
[49] A. Klypin,et al. The Anisotropic Distribution of Galactic Satellites , 2005, astro-ph/0502496.
[50] J. Brinkmann,et al. Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.
[51] Padova,et al. On the environmental dependence of halo formation , 2004, astro-ph/0402237.
[52] R. Nichol,et al. The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.
[53] J. Ostriker,et al. Limits on Collisional Dark Matter from Elliptical Galaxies in Clusters , 2000, astro-ph/0010436.
[54] D. Spergel,et al. Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.
[55] H. Mo,et al. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.
[56] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[57] S. White,et al. An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.
[58] S. White,et al. The Structure of cold dark matter halos , 1995, astro-ph/9508025.
[59] A. Szalay,et al. The statistics of peaks of Gaussian random fields , 1986 .
[60] E. Bertschinger. Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .
[61] N. Kaiser. On the spatial correlations of Abell clusters , 1984 .
[62] P. Goldreich,et al. Self-similar gravitational collapse in an expanding universe , 1984 .
[63] John E. Davis,et al. Sloan Digital Sky Survey: Early Data Release , 2002 .