DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS

We show that the projected number density profiles of Sloan Digital Sky Survey photometric galaxies around galaxy clusters display strong evidence for the splashback radius, a sharp halo edge corresponding to the location of the first orbital apocenter of satellite galaxies after their infall. We split the clusters into two subsamples with different mean projected radial distances of their members, , at fixed richness and redshift. The sample with smaller has a smaller ratio of the splashback radius to the traditional halo boundary than the subsample with larger , indicative of different mass accretion rates for these subsamples. The same subsamples were recently used by Miyatake et al. to show that their large-scale clustering differs despite their similar weak lensing masses, demonstrating strong evidence for halo assembly bias. We expand on this result by presenting a 6.6σ difference in the clustering amplitudes of these samples using cluster–photometric galaxy cross-correlations. This measurement is a clear indication that halo clustering depends on parameters other than halo mass. If is related to the mass assembly history of halos, the measurement is a manifestation of the halo assembly bias. However, our measured splashback radii are smaller, while the strength of the assembly bias signal is stronger, than the predictions of collisionless Λ cold dark matter simulations. We show that dynamical friction, cluster mis-centering, or projection effects are not likely to be the sole source of these discrepancies. However, further investigations regarding unknown catastrophic weak lensing or cluster identification systematics are warranted.

[1]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[2]  S. More,et al.  Evidence of Halo Assembly Bias in Massive Clusters. , 2015, Physical review letters.

[3]  R. Mandelbaum,et al.  ON DETECTING HALO ASSEMBLY BIAS WITH GALAXY POPULATIONS , 2015, 1504.07632.

[4]  F. Kahlhoefer,et al.  On the interpretation of dark matter self-interactions in Abell 3827 , 2015, 1504.06576.

[5]  S. More,et al.  THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS , 2015, 1504.05591.

[6]  CEA-Saclay,et al.  Detection of universality of dark matter profile from Subaru weak lensing measurements of 50 massive clusters , 2015, 1504.01413.

[7]  David Harvey,et al.  The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.

[8]  Oliver D. Elbert,et al.  Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary , 2014, 1412.1477.

[9]  F. Prada,et al.  MultiDark simulations: the story of dark matter halo concentrations and density profiles , 2014, 1411.4001.

[10]  R. Tully,et al.  GALAXY GROUPS , 2014, 1411.1511.

[11]  E. Rykoff,et al.  redMaPPer – IV. Photometric membership identification of red cluster galaxies with 1 per cent precision , 2014, 1410.1193.

[12]  N. Dalal,et al.  Splashback in accreting dark matter halos , 2014, 1409.4482.

[13]  Andrew P. Hearin,et al.  Beyond halo mass: galactic conformity as a smoking gun of central galaxy assembly bias , 2014, 1404.6524.

[14]  F. V. D. Bosch,et al.  Statistics of dark matter substructure – I. Model and universal fitting functions , 2014, 1403.6827.

[15]  A. Kravtsov,et al.  DEPENDENCE OF THE OUTER DENSITY PROFILES OF HALOS ON THEIR MASS ACCRETION RATE , 2014, 1401.1216.

[16]  S. Cole,et al.  N-body dark matter haloes with simple hierarchical histories , 2013, 1311.6649.

[17]  S. More COSMOLOGICAL DEPENDENCE OF THE MEASUREMENTS OF LUMINOSITY FUNCTION, PROJECTED CLUSTERING AND GALAXY–GALAXY LENSING SIGNAL , 2013, 1309.2943.

[18]  F. Kahlhoefer,et al.  Colliding clusters and dark matter self-interactions , 2013, 1308.3419.

[19]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[20]  M. Viel,et al.  Non-linear evolution of the cosmic neutrino background , 2012, 1212.4855.

[21]  Princeton,et al.  Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.

[22]  Michael J. Kurtz,et al.  MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS) , 2012, 1209.3786.

[23]  Stefano Borgani,et al.  Formation of Galaxy Clusters , 2012, 1205.5556.

[24]  J. Rhodes,et al.  THE CORRELATED FORMATION HISTORIES OF MASSIVE GALAXIES AND THEIR DARK MATTER HALOS , 2012, 1205.4245.

[25]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[26]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[27]  M. Oguri,et al.  Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey , 2011, 1109.2594.

[28]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[29]  M. Oguri,et al.  Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies , 2011, 1101.0650.

[30]  T. Broadhurst,et al.  CLUSTER MASS PROFILES FROM A BAYESIAN ANALYSIS OF WEAK-LENSING DISTORTION AND MAGNIFICATION MEASUREMENTS: APPLICATIONS TO SUBARU DATA , 2010, 1011.3044.

[31]  M. Becker,et al.  ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS , 2010, 1011.1681.

[32]  F. Villaescusa-Navarro,et al.  Cores and cusps in warm dark matter halos , 2010, 1010.3008.

[33]  R. Mohayaee,et al.  Non-spherical similarity solutions for dark halo formation , 2010, 1007.4195.

[34]  M. Oguri,et al.  Direct measurement of dark matter halo ellipticity from two-dimensional lensing shear maps of 25 massive clusters , 2010, 1004.4214.

[35]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[36]  F. Fontanot,et al.  Are Brightest Halo Galaxies Central Galaxies , 2010, 1001.4533.

[37]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[38]  S. Bridle,et al.  A DETECTION OF DARK MATTER HALO ELLIPTICITY USING GALAXY CLUSTER LENSING IN THE SDSS , 2008, 0806.2723.

[39]  J. Richard Bond,et al.  Halo Assembly Bias in Hierarchical Structure Formation , 2008, 0803.3453.

[40]  L. Gao,et al.  On halo formation times and assembly bias , 2008, 0803.2250.

[41]  S. White,et al.  The redshift dependence of the structure of massive Λ cold dark matter haloes , 2007, 0711.0746.

[42]  Anthony H. Gonzalez,et al.  Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 , 2007, 0704.0261.

[43]  Cheng Li,et al.  The alignment between satellites and central galaxies: theory versus observations , 2007, astro-ph/0701130.

[44]  S. White,et al.  Assembly bias in the clustering of dark matter haloes , 2006, astro-ph/0611921.

[45]  R. Wechsler,et al.  The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.

[46]  H. Mo,et al.  Observational Evidence for an Age Dependence of Halo Bias , 2005, astro-ph/0509626.

[47]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[48]  T. Broadhurst,et al.  Can the Steep Mass Profile of A1689 Be Explained by a Triaxial Dark Halo? , 2005, astro-ph/0505452.

[49]  A. Klypin,et al.  The Anisotropic Distribution of Galactic Satellites , 2005, astro-ph/0502496.

[50]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[51]  Padova,et al.  On the environmental dependence of halo formation , 2004, astro-ph/0402237.

[52]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[53]  J. Ostriker,et al.  Limits on Collisional Dark Matter from Elliptical Galaxies in Clusters , 2000, astro-ph/0010436.

[54]  D. Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[55]  H. Mo,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[56]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[57]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[58]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[59]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[60]  E. Bertschinger Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .

[61]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[62]  P. Goldreich,et al.  Self-similar gravitational collapse in an expanding universe , 1984 .

[63]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .