The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol.

[1]  G. Ourisson,et al.  Non-specific biosynthesis of gammacerane derivatives by a cell-free system from the protozoon Tetrahymena pyriformis. Conformations of squalene, (3S)-squalene epoxide and (3R)-squalene epoxide during the cyclization. , 2005, European journal of biochemistry.

[2]  G. Ourisson,et al.  Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus. , 2005, European journal of biochemistry.

[3]  G. Ourisson,et al.  Non-specific biosynthesis of hopane triterpenes by a cell-free system from Acetobacter pasteurianum. , 2005, European journal of biochemistry.

[4]  P. Albrecht,et al.  Novel Optically Active Hydrocarbons in Sediments: Evidence for an Extensive Biological Cyclization of Higher Regular Polyprenols , 1994 .

[5]  M. Tsuhako,et al.  Phosphorylation of Biomolecules with Inorganic Phosphorylating Agents. , 1994 .

[6]  G. Prestwich,et al.  A specific amino acid repeat in squalene and oxidosqualene cyclases. , 1994, Trends in biochemical sciences.

[7]  K. Poralla The possible role of a repetitive amino acid motif in evolution of triterpenoid cyclases , 1994 .

[8]  H. Sahm,et al.  Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. , 1993, The Biochemical journal.

[9]  D. Hafenbradl,et al.  A Novel Unsaturated Archaeal Ether Core Lipid from the Hyperthermophile Methanopyrus kandleri , 1993 .

[10]  M. Rohmer,et al.  Effect of a non-methanogenic symbiont and exogenous stigmasterol on the viability and tetrahymanol content of the anaerobic ciliate Trimyema compressum. , 1993, European journal of protistology.

[11]  P. Vlad Superacidic cyclization of terpenoids , 1993 .

[12]  J. Griffin,et al.  Nucleotide and deduced amino acid sequences of the oxidosqualene cyclase from Candida albicans , 1992 .

[13]  G. Ourisson,et al.  HOPANOIDS. I: GEOHOPANOIDS : THE MOST ABUDANT NATURAL PRODUCTS ON EARTH ? , 1992 .

[14]  G. Ourisson,et al.  Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids , 1992 .

[15]  G. Ourisson,et al.  Sodium di-polyprenyl phosphates form “primitive” membranes , 1992 .

[16]  K. Bloch Sterol molecule: structure, biosynthesis, and function , 1992, Steroids.

[17]  K. Peters,et al.  The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments , 1992 .

[18]  G. Ourisson,et al.  The interaction of various cholesterol 'ancestors' with lipid membranes: a 2H-NMR study on oriented bilayers. , 1992, Biochimica et biophysica acta.

[19]  D. Heissler,et al.  Synthesis of (Z,Z)-Tricyclohexaprenol. , 1992 .

[20]  J. Moldowan,et al.  A new class of natural products revealed by 3β-alkyI steranes in petroleum , 1992, Nature.

[21]  K. Entian,et al.  Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism , 1992, Journal of bacteriology.

[22]  E. Corey,et al.  Purification of the 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae , 1991 .

[23]  G. Ourisson,et al.  Purification and some properties of the squalene-tetrahymanol cyclase from Tetrahymena thermophila. , 1991, Biochimica et biophysica acta.

[24]  H. Watanabe,et al.  Volcanic production of polyphosphates and its relevance to prebiotic evolution , 1991, Nature.

[25]  H. Williams,et al.  Partial purification and characterization of oxidosqualene-lanosterol cyclase from bakers yeast , 1991 .

[26]  K. Poralla,et al.  Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius. , 1990, European journal of biochemistry.

[27]  M. Kates,et al.  Polar lipids of non-alkaliphilic Halococci. , 1990, Biochimica et biophysica acta.

[28]  I. Abe,et al.  Purification of squalene‐2,3‐epoxide cyclases from cell suspension cultures of Rabdosia japonica Hara , 1989 .

[29]  G. Ourisson,et al.  The Conformation of Cycloartenol Investigated by NMR and Molecular Mechanics , 1989 .

[30]  G. Ourisson The evolution of terpenes to sterols , 1989 .

[31]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[32]  M. Rohmer,et al.  Polyterpenoids as cholesterol and tetrahymanol surrogates in the ciliate Tetrahymena pyriformis. , 1988, Biochimica et biophysica acta.

[33]  M. Rohmer,et al.  Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi. , 1987, European journal of biochemistry.

[34]  F. Westheimer Why nature chose phosphates. , 1987, Science.

[35]  G. Ourisson,et al.  Microbial lipids betrayed by their fossils. , 1987, Microbiological sciences.

[36]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[37]  A. Gliozzi,et al.  Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids , 1986, Microbiological reviews.

[38]  G. Ourisson,et al.  Organization of Carotenoid‐Phospholipid Bilayer Systems. Incorporation of Zeaxanthin, Astaxanthin, and their C50 Homologues into Dimyristoylphosphatidylcholine Vesicles , 1986 .

[39]  M. Rohmer,et al.  Enzymatic cyclization of all-trans pentaprenyl and hexaprenyl methyl ethers by a cell-free system from the protozoon Tetrahymena pyriformis. The biosynthesis of scalarane and polycyclohexaprenyl derivatives. , 1986, European journal of biochemistry.

[40]  M. Rohmer,et al.  Sterol biosynthesis de nova via cycloartenol by the soil amoeba Acanthamoeba polyphaga. , 1985, The Biochemical journal.

[41]  P. Albrecht,et al.  Polar Lipids of Archaebacteria in Sediments and Petroleums , 1982, Science.

[42]  G. Ourisson,et al.  Predictive microbial biochemistry — from molecular fossils to procaryotic membranes , 1982 .

[43]  K. Poralla,et al.  A glycolipid containing hopane isolated from the acidophilic, thermophilic bacillus acidocaldarius, has a cholesterol‐like function in membranes , 1980, FEBS letters.

[44]  S. Rottem,et al.  Carotenoids acts as reinforcers of the Acholeplasma laidlawii lipid bilayer , 1979, Journal of bacteriology.

[45]  G. Hazlewood,et al.  A new series of long-chain dicarboxylic acids with vicinal dimethyl branching found as major components of the lipids of Butyrivibrio spp. , 1979, The Biochemical journal.

[46]  G. Ourisson,et al.  Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. Langworthy,et al.  Existence of carotenoids in Acholeplasma axanthum , 1979, Journal of bacteriology.

[48]  D. Deamer,et al.  Liposomes from ionic, single-chain amphiphiles. , 1978, Biochemistry.

[49]  C. S. Springer,et al.  The intrinsic structural asymmetry of highly curved phospholipid bilayer membranes. , 1977, Biochimica et biophysica acta.

[50]  B. de Kruyff,et al.  The function of sterols in membranes. , 1976, Biochimica et biophysica acta.

[51]  J. Mcmurry,et al.  Simplified method for the titanium(II)-induced coupling of allylic and benzylic alcohols , 1975 .

[52]  M. Kates,et al.  Isolation and characterization of C50-carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum. , 1975, Biochimica et biophysica acta.

[53]  G. Ourisson,et al.  Triterpene Alcohol Isolation from Oil Shale , 1969, Science.

[54]  K. Tsukada,et al.  Occurrence of dehydrosqualene (C30 phytoene) in Staphylococcus aureus. , 1968, Biochimica et biophysica acta.

[55]  R. Conner,et al.  Cholesterol inhibition of pentacyclic triterpenoid biosynthesis in Tetrahymena pyriformis. , 1968, The Journal of protozoology.

[56]  S. Miller,et al.  Synthesis of Pyrophosphate Under Primitive Earth Conditions , 1964, Nature.

[57]  N. Nomura,et al.  Transition metal-catalyzed substitution reaction of allylic phosphates with Grignard reagents , 1994 .

[58]  G. Britton Biosynthesis of carotenoids , 1993 .

[59]  P. Albrecht,et al.  Novel triterpene-derived hydrocarbons of arborane/fernane series in sediments. Part I. , 1992 .

[60]  M. Baltscheffsky,et al.  Chapter 14 Inorganic pyrophosphate and inorganic pyrophosphatases , 1992 .

[61]  S. Takaichi,et al.  Carotenoid sulphates from the aerobic photosynthetic bacterium, Erythrobacter longus , 1991 .

[62]  M. Julia Centenary Lecture. Chemical studies on some early steps in the biosynthesis of squalene , 1991 .

[63]  P. Albrecht,et al.  3β-Carboxysteranes, a novel family of fossil steroids , 1990 .

[64]  G. Ourisson,et al.  Tricyclohexaprenol and an octaprenediol, two of the “primitive” amphiphilic lipids do improve phospholipidic membranes , 1990 .

[65]  E. Corey,et al.  Total synthesis of (±)-tricyclohexaprenol, a possible forerunner of sterols in the evolution of biomembranes , 1987 .

[66]  S. Neumann,et al.  Purification, partial characterization and substrate specificity of a squalene cyclase from Bacillus acidocaldarius. , 1986, Biological chemistry Hoppe-Seyler.

[67]  G. Ourisson,et al.  Identification of long-chain tricyclic terpene hydrocarbons (C21–C30) in geological samples , 1984 .

[68]  G. Ourisson,et al.  Novel tricyclic terpanes (C19, C20) in sediments and petroleums , 1982 .

[69]  O. Strausz,et al.  18,19-Bisnor-13βH, 14-αh-cheilanthane: a novel degraded tricyclic sesterterpenoid-type hydrocarbon from the athabasca oil sands , 1982 .

[70]  K. Bloch,et al.  Sterol structure and membrane function. , 1981, Current topics in cellular regulation.

[71]  M. Kates,et al.  The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. , 1978, Progress in the chemistry of fats and other lipids.

[72]  P. Albrecht,et al.  Rearranged steranes in sediments and crude oils. , 1978 .

[73]  P. Albrecht,et al.  Rearranged sterenes in a shale: occurrence and simulated formation , 1975 .

[74]  L. J. Mulheirn,et al.  The biosynthesis of sterols , 1972 .

[75]  G. Steel,et al.  Isolation and characterization of a triterpenoid alcohol from the Green River Shale , 1971 .

[76]  M. Rosa,et al.  Cyclohexane fatty acids from a thermophilic bacterium , 1971 .

[77]  P. Benveniste,et al.  La biosynthèse des stérols dans les tissus de tabac cultivés in vitro—II. : Particularités de la biosynthèse des phytostérols des tissus de tabac cultivés in vitro , 1966 .

[78]  M. Florkin L'Evolution biochimique , 1944 .