Recent advances on the interval distance geometry problem

We discuss a discretization-based solution approach for a classic problem in global optimization, namely the distance geometry problem (DGP). We focus our attention on a particular class of the DGP which is concerned with the identification of the conformation of biological molecules. Among the many relevant ideas for the discretization of the DGP in the literature, we identify the most promising ones and address their inherent limitations to application to this class of problems. The result is an improved method for estimating 3D structures of small proteins based only on the knowledge of some distance restraints between pairs of atoms. We present computational results showcasing the usefulness of the new proposed approach. Proteins act on living cells according to their geometric and chemical properties: finding protein conformations can be very useful within the pharmaceutical industry in order to synthesize new drugs.

[1]  Ali Ghodsi,et al.  Determining Protein Structures from NOESY Distance Constraints by Semidefinite Programming , 2013, J. Comput. Biol..

[2]  Oktay Günlük,et al.  Discretization vertex orders in distance geometry , 2015, Discret. Appl. Math..

[3]  K. Wüthrich,et al.  Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS , 2002, Journal of biomolecular NMR.

[4]  Zhijun Wu,et al.  Solving a Generalized Distance Geometry Problem for Protein Structure Determination , 2011, Bulletin of mathematical biology.

[5]  Leo Liberti,et al.  Discretization orders for distance geometry problems , 2012, Optim. Lett..

[6]  Deok-Soo Kim,et al.  Protein structure optimization by side-chain positioning via beta-complex , 2013, J. Glob. Optim..

[7]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[8]  Leo Liberti,et al.  Noname manuscript No. (will be inserted by the editor) The Discretizable Distance Geometry Problem , 2022 .

[9]  P. Vachette,et al.  A Brief Survey of State-of-the-Art BioSAXS. , 2016, Protein and peptide letters.

[10]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[11]  Fabio Schoen,et al.  Minimal interatomic distance in Morse clusters , 2002, J. Glob. Optim..

[12]  Nelson Maculan,et al.  Discretization orders for protein side chains , 2014, Journal of Global Optimization.

[13]  H. Bradford Thompson,et al.  Calculation of Cartesian Coordinates and Their Derivatives from Internal Molecular Coordinates , 1967 .

[14]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[15]  Leo Liberti,et al.  A Branch-and-Prune algorithm for the Molecular Distance Geometry Problem , 2008, Int. Trans. Oper. Res..

[16]  Panos M. Pardalos,et al.  Some Properties for the Euclidean Distance Matrix and Positive Semidefinite Matrix Completion Problems , 2003, J. Glob. Optim..

[17]  Qunfeng Dong,et al.  A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances , 2002, J. Glob. Optim..

[18]  Yinyu Ye,et al.  Semidefinite programming based algorithms for sensor network localization , 2006, TOSN.

[19]  Leo Liberti,et al.  Molecular distance geometry methods: from continuous to discrete , 2010, Int. Trans. Oper. Res..

[20]  Fabio C. L. Almeida,et al.  An Overview on Protein Structure Determination by NMR: Historical and Future Perspectives of the use of Distance Geometry Methods , 2013, Distance Geometry.

[21]  Leo Liberti,et al.  Double variable neighbourhood search with smoothing for the molecular distance geometry problem , 2009, J. Glob. Optim..

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Qunfeng Dong,et al.  A Geometric Build-Up Algorithm for Solving the Molecular Distance Geometry Problem with Sparse Distance Data , 2003, J. Glob. Optim..

[24]  P. Güntert Automated NMR structure calculation with CYANA. , 2004, Methods in molecular biology.

[25]  Jorge J. Moré,et al.  Distance Geometry Optimization for Protein Structures , 1999, J. Glob. Optim..

[26]  Michael Nilges,et al.  ARIA: automated NOE assignment and NMR structure calculation , 2003, Bioinform..

[27]  Di Wu,et al.  An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data , 2003, J. Glob. Optim..

[28]  Leo Liberti,et al.  On the number of realizations of certain Henneberg graphs arising in protein conformation , 2014, Discret. Appl. Math..

[29]  Nelson Maculan,et al.  Solving the molecular distance geometry problem with inaccurate distance data , 2013, BMC Bioinformatics.

[30]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[31]  Torsten Herrmann,et al.  Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH , 2008, Journal of biomolecular NMR.

[32]  Pedro Larrañaga,et al.  Side chain placement using estimation of distribution algorithms , 2007, Artif. Intell. Medicine.

[33]  P. Cramer,et al.  Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry , 2010, EMBO Journal.

[34]  M J Sippl,et al.  Cayley-Menger coordinates. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Antonio Mucherino,et al.  Discretization orders and efficient computation of cartesian coordinates for distance geometry , 2014, Optimization Letters.

[36]  BiswasPratik,et al.  Semidefinite programming based algorithms for sensor network localization , 2006 .

[37]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[38]  Leo Liberti,et al.  Distance Geometry: Theory, Methods, and Applications , 2013, Distance Geometry.

[39]  K Wüthrich,et al.  Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. , 1983, Journal of molecular biology.

[40]  Leo Liberti,et al.  An algorithm to enumerate all possible protein conformations verifying a set of distance constraints , 2015, BMC Bioinformatics.

[41]  Leo Liberti,et al.  On the computation of protein backbones by using artificial backbones of hydrogens , 2011, J. Glob. Optim..

[42]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[43]  Kenneth M. Merz,et al.  The application of the genetic algorithm to the minimization of potential energy functions , 1993, J. Glob. Optim..

[44]  Martin Vetterli,et al.  Euclidean Distance Matrices: Essential theory, algorithms, and applications , 2015, IEEE Signal Processing Magazine.

[45]  Antonio Mucherino,et al.  Distance Geometry in Structural Biology: New Perspectives , 2013, Distance Geometry.

[46]  Leo Liberti,et al.  The discretizable molecular distance geometry problem , 2006, Computational Optimization and Applications.

[47]  Torsten Herrmann,et al.  CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO , 2015, Journal of biomolecular NMR.

[48]  Antonio Mucherino On the Identification of Discretization Orders for Distance Geometry with Intervals , 2013, GSI.

[49]  M. Fréchet Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .

[50]  Le Thi Hoai An Solving Large Scale Molecular Distance Geometry Problems by a Smoothing Technique via the Gaussian Transform and D.C. Programming , 2003, J. Glob. Optim..

[51]  Di Wu,et al.  Rigid versus unique determination of protein structures with geometric buildup , 2008, Optim. Lett..

[52]  Shesh N Rai,et al.  Metabolomics data analysis and missing value issues with application to infarcted mouse hearts , 2015, BMC Bioinformatics.

[53]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[54]  Richard H. Byrd,et al.  A Stochastic/Perturbation Global Optimization Algorithm for Distance Geometry Problems , 1997, J. Glob. Optim..

[55]  Antonio Mucherino,et al.  A Pseudo de Bruijn Graph Representation for Discretization Orders for Distance Geometry , 2015, IWBBIO.

[56]  Antonio Mucherino,et al.  An adaptive branching scheme for the Branch & Prune algorithm applied to Distance Geometry , 2014, 2014 Federated Conference on Computer Science and Information Systems.

[57]  K Wüthrich,et al.  Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Computation of sterically allowed proton-proton distances and statistical analysis of proton-proton distances in single crystal protein conformations. , 1982, Journal of molecular biology.

[58]  Leo Liberti,et al.  Influence of Pruning Devices on the Solution of Molecular Distance Geometry Problems , 2011, SEA.

[59]  Francesco Fiorito,et al.  Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY , 2008, Journal of biomolecular NMR.

[60]  Thomas G. Metzger,et al.  Conformational searches for the global minimum of protein models , 1994, J. Glob. Optim..

[61]  Nelson Maculan,et al.  Clifford Algebra and the Discretizable Molecular Distance Geometry Problem , 2015 .

[62]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[63]  Nathan Krislock,et al.  Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions , 2010, SIAM J. Optim..

[64]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[65]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[66]  Leo Liberti,et al.  The discretizable molecular distance geometry problem is easier on proteins , 2012 .

[67]  Leo Liberti,et al.  Recent advances on the Discretizable Molecular Distance Geometry Problem , 2012, Eur. J. Oper. Res..

[68]  Leo Liberti,et al.  The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances , 2011, Journal of Global Optimization.

[69]  Leo Liberti,et al.  Euclidean Distance Geometry and Applications , 2012, SIAM Rev..