Molecular understanding of the critical role of alkali metal cations in initiating CO2 electroreduction on Cu(100) surface

[1]  H. Hansen,et al.  Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction , 2023, Nature communications.

[2]  Yongbo Kuang,et al.  Molecular understanding of cation effects on double layers and their significance to CO-CO dimerization , 2023, National science review.

[3]  Shigang Sun,et al.  Mechanism of Cations Suppressing Proton Diffusion Kinetics for Electrocatalysis. , 2023, Angewandte Chemie.

[4]  H. Hansen,et al.  Cation-Coordinated Inner-Sphere CO2 Electroreduction at Au-Water Interfaces. , 2023, Journal of the American Chemical Society.

[5]  Hao Wang,et al.  Quantitative Understanding of Cation Effects on the Electrochemical Reduction of CO2 and H+ in Acidic Solution , 2022, ACS Catalysis.

[6]  T. Rahman,et al.  On the role of metal cations in CO2 electrocatalytic reduction , 2022, Nature Catalysis.

[7]  Karen Chan,et al.  A Cation Concentration Gradient Approach to Tune the Selectivity and Activity of CO2 Electroreduction. , 2022, Angewandte Chemie.

[8]  Shengli Chen,et al.  Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt , 2022, Nature Catalysis.

[9]  D. Won,et al.  A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction , 2022, Nature Communications.

[10]  Yang Wang,et al.  Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO2 Reduction on Single Atom Catalysts , 2022, ACS Catalysis.

[11]  W. Goddard,et al.  Selective Enhancement of Methane Formation in Electrochemical CO2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu , 2022, ACS Catalysis.

[12]  U. Hejral,et al.  Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses , 2022, Nature Catalysis.

[13]  A. Gross,et al.  Ab Initio Simulations of Water/Metal Interfaces. , 2022, Chemical reviews.

[14]  Gang-Hua Deng,et al.  The Solvation-Induced Onsager Reaction Field Rather than the Double-Layer Field Controls CO2 Reduction on Gold , 2022, JACS Au.

[15]  Lei Shi,et al.  Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. , 2021, Journal of the American Chemical Society.

[16]  Karen Chan,et al.  Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts , 2021, Nature Catalysis.

[17]  Jian Liu,et al.  Promotional Role of a Cation Intermediate Complex in C2 Formation from Electrochemical Reduction of CO2 over Cu , 2021, ACS Catalysis.

[18]  W. Goddard,et al.  Dramatic Change in the Step Edges of the Cu(100) Electrocatalyst upon Exposure to CO: Operando Observations by Electrochemical STM and Explanation Using Quantum Mechanical Calculations , 2021, ACS Catalysis.

[19]  N. López,et al.  Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution , 2021, Nature Catalysis.

[20]  S. Haussener,et al.  Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium , 2021, Nature Catalysis.

[21]  Kari Laasonen,et al.  Reconciling the Experimental and Computational Hydrogen Evolution Activities of Pt(111) through DFT-Based Constrained MD Simulations , 2021, ACS Catalysis.

[22]  Jiang Liu,et al.  Partial Coordination-Perturbed Bi-Copper Sites for Selective Elec-troreduction of CO2 to Hydrocarbons. , 2021, Angewandte Chemie.

[23]  Yuanyue Liu,et al.  Origin of Selective Production of Hydrogen Peroxide by Electrochemical Oxygen Reduction. , 2021, Journal of the American Chemical Society.

[24]  F. P. García de Arquer,et al.  CO2 electrolysis to multicarbon products in strong acid , 2021, Science.

[25]  M. Heyde,et al.  Identifying Structure–Selectivity Correlations in the Electrochemical Reduction of CO2: A Comparison of Well‐Ordered Atomically Clean and Chemically Etched Copper Single‐Crystal Surfaces , 2021, Angewandte Chemie.

[26]  J. Neugebauer,et al.  Impact of Water Coadsorption on the Electrode Potential of H-Pt(1 1 1)-Liquid Water Interfaces. , 2021, Physical review letters.

[27]  P. Kenis,et al.  Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes , 2020, Nature Catalysis.

[28]  A. Malkani,et al.  Cation Effect on Interfacial CO2 Concentration in the Electrochemical CO2 Reduction Reaction , 2020 .

[29]  Jun Cheng,et al.  Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface , 2020, Science Advances.

[30]  Song Xue,et al.  How the Nature of the Alkali Metal Cations Influences the Double-Layer Capacitance of Cu, Au, and Pt Single-Crystal Electrodes , 2020 .

[31]  Ghulam Hussain,et al.  How cations determine the interfacial potential profile: Relevance for the CO2 reduction reaction , 2019 .

[32]  Christine M. Gabardo,et al.  Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction , 2019, Nature Catalysis.

[33]  J. Rossmeisl,et al.  Electrochemical CO2 Reduction: Classifying Cu Facets , 2019, ACS Catalysis.

[34]  J. Nørskov,et al.  Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. , 2019, Chemical reviews.

[35]  J. Nørskov,et al.  Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products , 2018, ACS Catalysis.

[36]  M. Finnis,et al.  First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. , 2018, Physical Review Letters.

[37]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[38]  Song Xue,et al.  Influence of the Nature of the Alkali Metal Cations on the Electrical Double-Layer Capacitance of Model Pt(111) and Au(111) Electrodes. , 2018, The journal of physical chemistry letters.

[39]  A. Cuesta,et al.  Spectroscopic Evidence of Size-Dependent Buffering of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction. , 2017, ACS applied materials & interfaces.

[40]  Charlie Tsai,et al.  Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. , 2017, Journal of the American Chemical Society.

[41]  A. Bell,et al.  Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. , 2016, Journal of the American Chemical Society.

[42]  J. Nørskov,et al.  Electric Field Effects in Electrochemical CO2 Reduction , 2016 .

[43]  J. Nørskov,et al.  Potential Dependence of Electrochemical Barriers from ab Initio Calculations. , 2016, The journal of physical chemistry letters.

[44]  Jens K Nørskov,et al.  Electrochemical Barriers Made Simple. , 2015, The journal of physical chemistry letters.

[45]  Min Yu,et al.  Accurate and efficient algorithm for Bader charge integration. , 2010, The Journal of chemical physics.

[46]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[47]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  Peter Margl,et al.  A Combined Car−Parrinello QM/MM Implementation for ab Initio Molecular Dynamics Simulations of Extended Systems: Application to Transition Metal Catalysis , 1997 .

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[52]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[53]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[54]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[55]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[56]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[57]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[58]  Y. Hori,et al.  Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode , 1991 .