A local adaptive model of natural images for almost optimal detection of hidden data

This paper proposes a novel methodology to detect data hidden in the least significant bits of a natural image. The goal is twofold: first, the methodology aims at proposing a test specifically designed for natural images, to this end an original model of images is presented, and, second, the statistical properties of the designed test, probability of false alarm and power function, should be predictable. The problem of hidden data detection is set in the framework of hypothesis testing theory. When inspected image parameters are known, the Likelihood Ratio Test (LRT) is designed and its statistical performance is analytically established. In practice, unknown image parameters have to be estimated. The proposed model of natural images is used to estimate unknown parameters accurately and to design a Generalized Likelihood Ratio Test (GLRT). Finally, the statistical properties of the proposed GLRT are analytically established which permits us, first, to guarantee a prescribed false-alarm probability and, second, to show that the GLRT is almost as powerful as the optimal LRT. Numerical results on natural image databases and comparison with prior art steganalyzers show the relevance of theoretical findings.

[1]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[2]  Tomás Pevný,et al.  Using High-Dimensional Image Models to Perform Highly Undetectable Steganography , 2010, Information Hiding.

[3]  Jessica J. Fridrich,et al.  Detecting LSB Steganography in Color and Gray-Scale Images , 2001, IEEE Multim..

[4]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[5]  Jessica J. Fridrich,et al.  On estimation of secret message length in LSB steganography in spatial domain , 2004, IS&T/SPIE Electronic Imaging.

[6]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  T. H. Thai,et al.  Statistical model of natural images , 2012, 2012 19th IEEE International Conference on Image Processing.

[8]  Florent Retraint,et al.  Statistical detection of defects in radiographic images using an adaptive parametric model , 2014, Signal Process..

[9]  Ingemar J. Cox,et al.  Digital Watermarking and Steganography , 2014 .

[10]  Florent Retraint,et al.  Statistical detection of data hidden in least significant bits of clipped images , 2014, Signal Process..

[11]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[12]  Florent Retraint,et al.  Statistical decision by using quantized observations , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[13]  Xiangyang Luo,et al.  An Improved Sample Pairs Method for Detection of LSB Embedding , 2004, Information Hiding.

[14]  Florent Retraint,et al.  Hypothesis testing by using quantized observations , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[15]  Carlo Bruni,et al.  Identification of discontinuities in blurred noisy signals , 1997 .

[16]  Rainer Bhme Advanced Statistical Steganalysis , 2010 .

[17]  Florent Retraint,et al.  A Cover Image Model For Reliable Steganalysis , 2011, Information Hiding.

[18]  Jessica J. Fridrich,et al.  Rich Models for Steganalysis of Digital Images , 2012, IEEE Transactions on Information Forensics and Security.

[19]  Gustavus J. Simmons,et al.  The Prisoners' Problem and the Subliminal Channel , 1983, CRYPTO.

[20]  Gerald C. Holst,et al.  CMOS/CCD sensors and camera systems , 2007 .

[21]  B. S. Manjunath,et al.  Steganalysis for Markov cover data with applications to images , 2006, IEEE Transactions on Information Forensics and Security.

[22]  Florent Retraint,et al.  An Asymptotically Uniformly Most Powerful Test for LSB Matching Detection , 2013, IEEE Transactions on Information Forensics and Security.

[23]  Tomás Pevný,et al.  Steganalysis by subtractive pixel adjacency matrix , 2010, IEEE Trans. Inf. Forensics Secur..

[24]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[25]  Rainer Böhme,et al.  The 'Dresden Image Database' for benchmarking digital image forensics , 2010, SAC '10.

[26]  Nira Dyn,et al.  Low Bit-Rate Image Coding Using Adaptive Geometric Piecewise Polynomial Approximation , 2007, IEEE Transactions on Image Processing.

[27]  Rémi Cogranne Détection statistique d'informations cachées dans une image naturelle à partir d'un modèle physique. (Statistical detection of information hidden in a natural image using a physical model) , 2012 .

[28]  Florent Retraint,et al.  Statistical Model of Quantized DCT Coefficients: Application in the Steganalysis of Jsteg Algorithm , 2014, IEEE Transactions on Image Processing.

[29]  Tomás Pevný,et al.  "Break Our Steganographic System": The Ins and Outs of Organizing BOSS , 2011, Information Hiding.

[30]  Clayton Scott,et al.  Performance Measures for Neyman–Pearson Classification , 2007, IEEE Transactions on Information Theory.

[31]  Florent Retraint,et al.  Statistical Decision Methods in Hidden Information Detection , 2011, Information Hiding.

[32]  J. Janesick,et al.  Scientific Charge-Coupled Devices , 2001 .

[33]  Florent Retraint,et al.  Hidden information detection using decision theory and quantized samples: Methodology, difficulties and results , 2014, Digit. Signal Process..

[34]  Minh N. Do,et al.  Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images , 2005, IEEE Transactions on Image Processing.

[35]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  A. Sripad,et al.  A necessary and sufficient condition for quantization errors to be uniform and white , 1977 .

[37]  Jessica J. Fridrich,et al.  Ensemble Classifiers for Steganalysis of Digital Media , 2012, IEEE Transactions on Information Forensics and Security.

[38]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[39]  Andrew D. Ker A General Framework for Structural Steganalysis of LSB Replacement , 2005, Information Hiding.

[40]  Sorina Dumitrescu,et al.  Detection of LSB steganography via sample pair analysis , 2002, IEEE Trans. Signal Process..

[41]  Florent Retraint,et al.  A new tomography model for almost optimal detection of anomalies , 2013, 2013 IEEE International Conference on Image Processing.

[42]  Jessica J. Fridrich,et al.  Reliable detection of LSB steganography in color and grayscale images , 2001, MM&Sec '01.

[43]  Florent Retraint,et al.  Application of hypothesis testing theory for optimal detection of LSB matching data hiding , 2013, Signal Process..

[44]  Lionel Fillatre Adaptive Steganalysis of Least Significant Bit Replacement in Grayscale Natural Images , 2012, IEEE Transactions on Signal Processing.

[45]  B. S. Manjunath,et al.  Detection of hiding in the least significant bit , 2004, IEEE Transactions on Signal Processing.

[46]  Cheng-Hsing Yang,et al.  Adaptive Data Hiding in Edge Areas of Images With Spatial LSB Domain Systems , 2008, IEEE Transactions on Information Forensics and Security.

[47]  Rainer Böhme,et al.  Revisiting weighted stego-image steganalysis , 2008, Electronic Imaging.

[48]  Jiwu Huang,et al.  Edge Adaptive Image Steganography Based on LSB Matching Revisited , 2010, IEEE Transactions on Information Forensics and Security.

[49]  Jessica J. Fridrich,et al.  Steganalysis of LSB Replacement Using Parity-Aware Features , 2012, Information Hiding.

[50]  Jaakko Astola,et al.  Local Approximation Techniques in Signal and Image Processing (SPIE Press Monograph Vol. PM157) , 2006 .

[51]  E. Lehmann Testing Statistical Hypotheses , 1960 .