Design of a Corner-Reflector Reactively Controlled Antenna for Maximum Directivity and Multiple Beam Forming at 2.4 GHz

Electronically steerable passive array radiator (ESPAR) antennas constitute a promising research field and are expected to play important role in future wireless communications. In this paper, a new approach in ESPAR antenna design for base station applications is proposed. A corner-plate reflector is combined with active and passive (reactively loaded) elements in order to implement a corner-reflector ESPAR (CR-ESPAR) configuration. It is shown that when combined with corner reflectors in order to sectorize the coverage area, an ESPAR antenna offers multiple radiation patterns with higher directivity and resolution. A case study of a CR-ESPAR suitable for 2.4 GHz ISM applications is demonstrated, where the performance of the structure is optimized with respect to resonance frequency, input impedance, and multiple switched-beam patterns configuration. The optimization of the array is performed using a Genetic Algorithm (GA) tool as a method of choice, achieving a maximum gain equal to 14 dBi for a 30°3 dB-beamwidth and a gain of 11 dBi for a 45°3 dB-beamwidth, while the VSWR is kept below 1.7 in all cases. Due to its limited physical size, the proposed CR-ESPAR can be used as a portable antenna for deployment in WiFi, WLAN and other applications.

[1]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[2]  T. Ohira,et al.  Reactance domain MUSIC algorithm for electronically steerable parasitic array radiator , 2004, IEEE Transactions on Antennas and Propagation.

[3]  Roger F. Harrington,et al.  Reactively controlled directive arrays , 1978 .

[4]  Jean-Marie Floch,et al.  A 1.8–6 GHz corner reflector based on shaped monopole excitation , 1999 .

[5]  T. Ohira,et al.  Electrically steerable passive array radiator (ESPAR) antennas , 2005, IEEE Antennas and Propagation Magazine.

[6]  Junwei Lu,et al.  Development of ESPAR antenna array using numerical modelling techniques , 2004, Proceedings. ICCEA 2004. 2004 3rd International Conference on Computational Electromagnetics and Its Applications, 2004..

[7]  O. Shibata,et al.  Dual-band ESPAR antenna for wireless LAN applications , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[8]  T. Ohira,et al.  Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming , 2000, Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510).

[9]  T. Ohira,et al.  Fast beamforming of electronically steerable parasitic array radiator antennas: theory and experiment , 2004, IEEE Transactions on Antennas and Propagation.

[10]  Jun Cheng,et al.  Adaptive beamforming of ESPAR antenna using sequential perturbation , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[11]  S.C. Panagiotou,et al.  Design and optimization of a multipurpose tri-band Electronically Steerable Passive Array Radiator (ESPAR) antenna with steerable-beam-pattern for maximum directionality at the frequencies of 1.8, 1.9 and 2.4 GHz with the aid of genetic algorithms , 2008, 2008 Loughborough Antennas and Propagation Conference.

[12]  R. Schlub,et al.  Dielectric embedded ESPAR (DE-ESPAR) antenna array for wireless communications , 2005, IEEE Transactions on Antennas and Propagation.

[13]  T. Ohira,et al.  Adaptive beamforming of ESPAR antenna based on stochastic approximation theory , 2001, APMC 2001. 2001 Asia-Pacific Microwave Conference (Cat. No.01TH8577).

[14]  R. Vaughan,et al.  Diversity gain from a single-port adaptive antenna using switched parasitic elements illustrated with a wire and monopole prototype , 1999 .

[15]  David V. Thiel,et al.  Switched Parasitic Antennas for Cellular Communications , 2002 .

[16]  Zhongxiang Shen,et al.  Modal-expansion analysis of electrically steerable passive array radiators (ESPAR) , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[17]  T. Ohira,et al.  Direction-of-arrival estimation using radiation power pattern with an ESPAR antenna , 2005, IEEE Transactions on Antennas and Propagation.

[18]  R. Vaughan Switched parasitic elements for antenna diversity , 1999 .

[19]  T. Ohira,et al.  Experimental studies of radiation pattern of electronically steerable passive array radiator smart antenna , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[20]  Seyed Alireza Zekavat,et al.  Smart antenna arrays with oscillating beam patterns: characterization of transmit diversity in semi-elliptic coverage , 2002, IEEE Trans. Commun..

[21]  Steven Gregory O'keefe,et al.  Base-station tracking in mobile communications using a switched parasitic antenna array , 1998 .

[22]  Seyed Alireza Zekavat,et al.  Transmit diversity via oscillating-beam-pattern adaptive antennas: an evaluation using geometric-based stochastic circular-scenario channel modeling , 2004, IEEE Transactions on Wireless Communications.

[23]  Christos N. Capsalis,et al.  A Broadband, Vertically Polarized, Circular Switched Parasitic Array for Indoor Portable DVB-T Applications at the IV UHF Band , 2007, IEEE Transactions on Broadcasting.

[24]  K. T. Mathew,et al.  A novel corner reflector antenna , 2001 .

[25]  T. Ohira,et al.  Electronically steerable parasitic array radiator antenna , 2004 .

[26]  Seyed Alireza Zekavat,et al.  Achieving high-capacity wireless by merging multicarrier CDMA systems and oscillating-beam smart antenna arrays , 2003, IEEE Trans. Veh. Technol..

[27]  Yahya Rahmat-Samii,et al.  Electromagnetic Optimization by Genetic Algorithms , 1999 .

[28]  Yilong Lu,et al.  Optimal design of special corner reflector antennas by the real-coded genetic algorithm , 2000, 2000 Asia-Pacific Microwave Conference. Proceedings (Cat. No.00TH8522).

[29]  Seyed Alireza Zekavat,et al.  Fading channel characterization for oscillating-beam-pattern smart antennas using geometric-based stochastic channel modeling with circular coverage area , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[30]  Kehu Yang,et al.  Realization of space-time adaptive filtering by employing electronically steerable passive array radiator antennas , 2003 .

[31]  Y. Kuwahara,et al.  Novel ESPAR antenna , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[32]  D.V. Thiel Impedance variations in controlled reactance parasitic antennas , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[33]  Seyed A. Zekavat,et al.  Oscillating-beam smart antenna arrays and multicarrier systems: achieving transmit diversity, frequency diversity, and directionality , 2002, IEEE Trans. Veh. Technol..

[34]  R. Schlub,et al.  Seven-element ground skirt monopole ESPAR antenna design from a genetic algorithm and the finite element method , 2003 .

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  S.C. Panagiotou,et al.  Design and Optimization of a Switched Parasitic Corner Plated Antenna for maximum Directionality and Diversity Gain at the WiFi frequency of 2.4 GHz with the aid of Genetic Algorithms , 2007, 2007 International Conference on Electromagnetics in Advanced Applications.

[37]  T. Ohira,et al.  Design of electronically steerable passive array radiator (ESPAR) antennas , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[38]  S. Jovanovic,et al.  Millimeter wave printed antenna array with high side lobe suppression , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.