Modeling Issues and Performance Analysis of High-Speed Interconnects Based on a Bundle of SWCNT

The effects of the uncertainties associated with the transverse pattern of carbon nanotubes (CNTs) of the conducting type in a semiglobal interconnect based on a densely packed CNT bundle are investigated. The effectiveness of the insertion of a variable number of repeaters along the interconnect and the influence of the contact resistances between CNTs and external circuitry are also studied. The numerical computations are performed by using a multiconductor transmission line model in which the per-unit length parameters are accurately derived from a macroscopic fluidlike description of the conduction phenomena in CNTs.

[1]  G. Miano,et al.  Performance Comparison Between Metallic Carbon Nanotube and Copper Nano-Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[2]  M. S. Sarto,et al.  New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects , 2009, IEEE Transactions on Nanotechnology.

[3]  Shinobu Fujita,et al.  A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. , 2008, Nano letters.

[4]  Yao Xu,et al.  A model for carbon nanotube interconnects , 2010, Int. J. Circuit Theory Appl..

[5]  John J. Plombon,et al.  High-frequency electrical properties of individual and bundled carbon nanotubes , 2007 .

[6]  K. Banerjee,et al.  On the Applicability of Single-Walled Carbon Nanotubes as VLSI Interconnects , 2009, IEEE Transactions on Nanotechnology.

[7]  A. Maffucci,et al.  A transmission line model for metallic carbon nanotube interconnects , 2008, Int. J. Circuit Theory Appl..

[8]  Yehea I. Ismail,et al.  Effects of inductance on the propagation delay and repeater insertion in VLSI circuits , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[9]  J. Meindl,et al.  Design and Performance Modeling for Single-Walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems , 2007, IEEE Transactions on Electron Devices.

[10]  S. Wind,et al.  Carbon nanotube electronics , 2002, Digest. International Electron Devices Meeting,.

[11]  M. D'Amore,et al.  Equivalent Single Conductor Modeling of Carbon Nanotube Bundles for Transient Analysis of High-Speed Interconnects , 2008, 2008 8th IEEE Conference on Nanotechnology.

[12]  J. Meindl,et al.  Performance Modeling for Single- and Multiwall Carbon Nanotubes as Signal and Power Interconnects in Gigascale Systems , 2008, IEEE Transactions on Electron Devices.

[13]  K. Banerjee,et al.  Circuit Modeling and Performance Analysis of Multi-Walled Carbon Nanotube Interconnects , 2008, IEEE Transactions on Electron Devices.

[14]  P. Burke,et al.  An RF circuit model for carbon nanotubes , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[15]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[16]  J.D. Meindl,et al.  Optimal interconnection circuits for VLSI , 1985, IEEE Transactions on Electron Devices.

[17]  A. Fetter,et al.  Electrodynamics of a layered electron gas. I. Single layer , 1973 .

[18]  M. Sheikhi,et al.  High-frequency transmission through metallic single-walled carbon nanotube interconnects , 2009 .

[19]  S. Datta,et al.  Transport effects on signal propagation in quantum wires , 2005, IEEE Transactions on Electron Devices.

[20]  C. Xu,et al.  Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status and Prospects , 2009 .

[21]  James D. Meindl,et al.  Carbon nanotube interconnects , 2007, ISPD '07.

[22]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[23]  C. Rutherglen,et al.  Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. , 2009, Small.

[24]  Y. Massoud,et al.  On the Optimal Design, Performance, and Reliability of Future Carbon Nanotube-Based Interconnect Solutions , 2008, IEEE Transactions on Electron Devices.

[25]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[26]  A. Maffucci,et al.  A New Circuit Model for Carbon Nanotube Interconnects With Diameter-Dependent Parameters , 2009, IEEE Transactions on Nanotechnology.

[27]  G. Miano,et al.  An Integral Formulation for the Electrodynamics of Metallic Carbon Nanotubes Based on a Fluid Model , 2006, IEEE Transactions on Antennas and Propagation.

[28]  Azad Naeemi,et al.  Optimal global interconnects for GSI , 2003 .

[29]  J. Wesstrom Signal propagation in electron waveguides: Transmission-line analogies , 1996 .

[30]  B. Chambers,et al.  Multiconductor transmission lines , 1975 .

[31]  A. Fetter,et al.  Electrodynamics of a layered electron gas. II. Periodic array , 1974 .

[32]  K. Banerjee,et al.  High-Frequency Analysis of Carbon Nanotube Interconnects and Implications for On-Chip Inductor Design , 2009, IEEE Transactions on Electron Devices.